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ABSTRACT

Addressing challenges in process design and optimisation, especially with complex models and
data uncertainties, requires effective tools for model development, selection, and identification.
Techniques such as Model-based Design of Experiments (MBDoE) help support this task by
screening and discriminating between models and, eventually, calibrating them. Open-source and
user-friendly Python packages have implemented some model identification techniques. However,
the need for a tool that can couple with various model simulators and account for the steps of
model identification as well as physical constraints of systems in design of experiments remains
unmet. In that light, we present the python package MIDDOE (Model-(based) Identification, Dis-
crimination, and Design of Experiments) to address this gap. It integrates rival models screening,
parameter estimation, uncertainty analysis, and MBDoE techniques, while adapting to various pro-
cess constraints. These functionalities are demonstrated via an in-silico study for a semi-batch
fermentation reactor model identification.

Keywords: model identification, model-based design of experiments, model discrimination, model calibration,

open-source software

INTRODUCTION

Process design and optimisation often requires the
precise determination of underlying phenomena and
identification of accurate models to describe them. This
process becomes complex when multiple rival models
and high uncertainty exist, and is further complicated by
the costly data required for model discrimination and cal-
ibration. To address these challenges, numerical tech-
niques have been introduced to streamline the pre-dis-
crimination stage by screening models and narrowing the
pool of candidates without additional experimental effort.
Building on these techniques, MBDoE methods have
been developed to design new experiments that maxim-
ize information, enabling easier discrimination between
rival models (MBDoE-MD) [1]. Additionally, they reduce
the confidence ellipsoid volume of estimated parameters
by enriching the information matrix (MBDoE-PP) via opti-
mal experiment design [1].

Open-source Python packages,

most notably

https://doi.org/10.69997/sct.192104

Syst Control Trans 4:1282-1287 (2025)

PYOMO [2], are essential tools for digital modeling
frameworks. PYOMO facilitates parameter estimation us-
ing Parmest [3] and supports MBDoE-PP through DOE
[4]. Despite many advantages in integrating with the
PYOMO ecosystem, these tools have some limitations.
They are effective when screening, reparametrizing, and
discriminating between models are not required. Addi-
tionally, they rely on PYOMO's array and model structure,
which makes them incompatible with other types of sim-
ulators. This dependency limits their flexibility in handling
diverse model structures, solvers, and constraints re-
lated to design decisions. Another significant limitation is
the lack of coherence in problem definitions across the
entire workflow. This arises from the need to use differ-
ent packages for tasks such as screening, identifying,
designing experiments, validating, and illustrating results.
Additionally, some of these tools are not readily available,
further complicating the workflow.

These gaps are here addressed by proposing the
Python package MIDDOE
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(https://pypi.org/project/middoe), which wraps dynamic
lumped models using standard Python/NumPy arrays and
integrates seamlessly with simulators. MIDDOE provides
tools not only for calibrating models, but also for screen-
ing, discriminating, and validating models. It provides
flexibility to perform these tasks using local methods
(single start or multi-core, multi-start) as well as global or
joint methods (multi-core) ensuring high computational
efficiency.

The package offers MBDoE techniques tailored for
both discrimination and calibration, specifically adapted
to the physical constraints of experimental campaigns
and apparatus. Key features include options for enforc-
ing constraints on design decisions and cost functions,
with the flexibility to structure MBDoE optimization prob-
lems to accommodate these limitations. This functionality
significantly aids experimenters in designing feasible and
optimal experiments.

Finally, MIDDOE emphasizes user-friendliness by
clearly distinguishing model components and enabling
one-time definitions for all techniques, eliminating addi-
tional programming. Designed as a numerical wrapper, it
can integrate with external simulators or internal Py-
thon/NumPy functions, enabling non-expert users to
avoid specific programming syntaxes. Data import is sim-
plified by allowing experimental data to be added as Ex-
cel files, organized into batches using separate sheets. It
supports various data input types and automates the
generation and restoration of results, data, and figures.
By representing its structure, we demonstrate a part of
its novel capabilities through an in-silico experimental
campaign for identifying a generic model.

PACKAGE ARCHITECTURE

MIDDOE is a Python library designed to provide a
modaular structure (see Figure 1) for performing essential
model identification steps. These steps include: 1) setting

up models and configuring control variables and con-
straints; 2), 3) screening models with sensitivity and es-
timability analyses; 4), 5) parameter estimation and un-
certainty analysis; 6), 7) designing experiments for model
discrimination and parameter precision; and 8) model val-
idation. The package organizes these steps into a user-
friendly syntax, beginning with the first step, which in-
volves importing the model(s) for the identification prob-
lem and defining structured dictionaries to symbolically
decode and classify model components. Models are im-
ported as Differential-Algebraic Equations (DAEs) and
solved using a method that efficiently handles both stiff
and non-stiff problems simultaneously. Variables are cat-
egorized as time-variant or time-invariant inputs and out-
puts, while parameters are addressed separately. The
design space, along with its associated physical con-
straints, is also defined, followed by specifying the solver
properties. Furthermore, each module requires and re-
ceived its own specific properties to ensure flexibility and
adaptability.

For screening methods, the software includes two
advanced techniques: Global Sensitivity Analysis (GSA)
using the Sobol method [5] and Estimability Analysis (EA)
using the orthogonalization method [6] corresponding to
steps 2 and 3, respectively. EA, a key feature of the pack-
age, helps restructure parametrically complex models by
ranking parameters from higher to lower significance.
This analysis introduces a methodology for calculating
corrected critical ratios and selecting an optimal subset
of parameters for estimating, prioritizing those with the
lowest corrected critical ratios. This selection ensures
that the model structure avoids over-parameterization
and biases.

Once the set of rival models is defined, parameter
estimation and uncertainty analysis are employed to as-
sess the precision of estimations and the predictability of
the identified model, corresponding to steps 4 and 5.
These steps are carried out with the flexibility to choose
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Figure 1: Model identification logic and modules provided in the package.
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Table 1: True parametric values for in-silico experiments and their definitions in Monod model.

Parameter Units Value
6, [h1] 0.31
6, [g. L1 0.11
05 [— 0.65
6, [h1] 0.25
65 [g. L1 5.00

Definition

Maximum specific growth rate

Michaelis constant

Yield coefficient

Biomass loss rate due to non-modeled factors
Substrate inhibition constant

Table 2: Design space for time-invariant and -variant process controls in Monod model.

creasing

Variable Units Range Approximation Profile

V1,0 [g.L7M] 1-10 -

Y2,0 [g-L71 1-10 -

uy [h™1] 0.05—-0.2 Constant Piecewise-re-
laxed

u, [g-L7Y] 5-35 Constant Piecewise-de-

Definition

Biomass initial concentrations
Substrate initial concentrations
Time-variant dilution rate

Time-variant feed substrate concentration

between global, gradient-free methods or local, gradi-
ent-based methods, supported by an internal Finite Dif-
ference Method (FDM) auto-differentiator. A key practi-
cal feature of the package addresses scenarios where
the experimental campaign fails to effectively discrimi-
nate between rival models. In such cases, MBDoE-MD [7]
is proposed as step 6. Similarly, MBDoE-PP is utilized in
step 7 to design experiments that improve parameter
precision in the selected model. Both modules offer flex-
ibility in cost function selection, addressing discrimina-
tion and precision goals while incorporating physical con-
straints into the MBDoE framework.

Finally, an identified model can undergo iterative
validation tests against experimental batches in step 8 to
assess its robustness. Our proposed package also in-
cludes additional visualization tools to support the con-
clusions of the modeling campaign, such as:

« model fitting with calibration and validation data,

o visualization of inter-parametric confidence el-
lipsoid areas and hyper-ellipsoid volume shrinkage,

e parameter precision evaluation via t-values and
confidence interval changes across batches, and

e p-value comparisons across models.

CASE STUDY AND RESULTS

Model structure and design space

As a matter of example, the software applies esti-
mability analysis (step 3) and MBDoE-PP (step 7). How-
ever, executing steps 1, 4, and 5 is necessary to support
these tasks. Simplified in silico simulated experiments
with a normally distributed noise of 5% on both of the re-
sponses are considered using a generic Monod model
[8]. This model predicts the concentrations of biomass
(y1 [g.L71]) and substrate (y, [g.L71]) in a semi-batch
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fermentation reactor with continuous feed. Table 1 pre-
sents the process model parameters for Egs. (1) to (3),
while Table 2 presents the design space for input varia-
bles. The experimental campaign begins with 2 experi-
ments at the center, and maximum of design space
boundaries, followed by up to five MBDoE-designed ex-
periments. Each experiment has a budget of 6 sampling
points and spans a duration of 10 hours. The use of E-
optimality criterion ensures parameter precision exceeds
the t-value threshold for all parameter estimations.
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Estimability analysis

After providing the necessary information and spec-
ifications as domain knowledge (step 1) to the software
and simulating the initial experiments, the initial observa-
tion matrix is formed. Then, this matrix is used for esti-
mation of parameters (steps 4, and 5), providing enough
information to return to Step 3: Estimability Analysis. This
step evaluates the significance ranking of parameters
and derives the optimal subset for estimation. The rank-
ing of parameters based on their significance, from high-
est to lowest, is 6,, 65, 6;, 65, and 6, for the first exper-
iment observations, and 6,, 6,, 63, 6s, and 0, for the
combined observations from the first and second exper-
iments.

Based on this ranking, the estimability analysis cal-
culates the corrected critical ratios for the estimated
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subset of parameters as illustrated in Figure 2. With a lim-
ited observation matrix, it suggests retaining 6, and 6;
and with an extended one it suggests retaining 64, 6,, and
03, as these correspond to the subset with the lowest
critical ratio. For both cases, 8, and 65 are evaluated as
insignificant and suggested to be dropped out in the
identification procedure by fixing them to their rough es-
timation. This approach aligns with the t-values (a preci-
sion metric based on the 95% confidence intervals of pa-
rameters after estimation) obtained at the end of the
identification campaign, viz. Figure 3 that indicates
greater uncertainty in the estimation of 6, with a t-value
of 0.006.

Selected parameters - experiment(s): 1, 2
6, 0,0, 6y, 04, 04 0y, 04, 05, 65 all

T
— 12.88 4 - 4.46
P —— Experiment(s): 1
I—e— Experiment(s): 1, 2|
> \\ Iz.aa

o
1

E 0

Corrected critical ratio - experiment(s)

5 -0.08 4
- -0.04

-0.16
-0.18 - -0.08

Corrected critical ratio - experiment(s): 1, 2

T T T
0, 04,03 84,05, 6, 84,03, 04,05 all
Selected parameters - experiment(s): 1

Figure 2: Corrected critical ratios across parameter
subsets.

Assuming no additional experimental budget is
available and avoiding further experimentation, 6,
and 65 are fixed, resulting in a reduced model with only
three parameters to estimate. This reduced model is sub-
sequently employed for parameter estimation (Steps 4
and 5). It achieves a slight improvement in accuracy for
all parameters by shifting the Probability Density Func-
tion (PDF) of estimates closer to the true values. Addi-
tionally, it significantly enhances precision, as indicated
by the narrower distribution and more reliable estimates,
although the t-values of 6;, and 6; remain below the ref-
erence threshold of 2.08.

This module is particularly effective in scenarios
with limited experimental budgets, where accurate pre-
dictions and precise estimation of key parameters are
critical. However, to avoid structural simplifications and
achieve higher precision in estimating the original model,
we revert to its full form and design new experiments. In
Step 7 (Figure 1), MBDoE-PP is employed to design new
experiments, enhance the information content of the ob-
servation matrix, and estimate all parameters with ac-
ceptable precision.
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Figure 3: Estimation PDFs, mean and 95% t-values for
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ments (Scenario 1), reduced model (Scenario 2), and
MBDoE-assisted campaign (Scenario 3).
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Model-based design of experiments

The MBDoE-related designs incorporate constraints de-
tailed in Table 2 and additional physical constraints to
demonstrate the capabilities of the code. These con-
straints include three switching times for time-variant
controls, with a minimum signal variation of u; and u, set
at 0.015 [h™!] and 3.0 [g- L], respectively. Switching
and sampling times are required to have a minimum in-
terval of 15 minutes, and additional sampling is prohibited
during the first and last 15 minutes of the experimental
campaign. Not only the signal levels of controls but also
the switching times and sampling times are part of the
design decisions in the MBDoE-PP optimization problem.

The design decisions for the MBDoE problem are
obtained using a global-local joint optimisation algorithm
that employs Differential Evolution for the initial explora-
tion of the design space, followed by Sequential Quad-
ratic Programming (SQP) with a trust-region method for
refinement. These results are illustrated in Figures 4a and
4c, showing that all obtained results comply with the pre-
viously enforced physical constraints of the system.

By simulating the experiments and complementing
the observations matrix, steps 4 and 5 are repeated. The
model is successfully identified using only two MBDOE-
designed experiments when the t-value for all parame-
ters exceeds the reference threshold of 2.02, while pre-
dictivity remains high with R?=0.98. Figures 4b and 4d il-
lustrate the model's behaviour in comparison with the
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experimental data, and Figure 3 summarizes the accu-
racy and precision achieved with this approach after the
identification procedure.

The MBDoE-assisted experimental campaign im-
proves the likelihood of identifying parameters previously
considered insignificant or difficult to estimate with ac-
ceptable precision. These estimations are not only pre-
cise but also accurate, closely aligning with the true pa-
rameter values. However, in cases of limited experi-
mental budgets or when restructuring the system or re-
producing samples is infeasible, estimability analysis can
help identify a predictive model that remains acceptably
precise.

CONCLUSION

We present a new Python library (MIDDoE) designed
to perform essential model identification steps, including
rival model screening, parameter estimation, uncertainty
analysis, and model-based design of experiments
(MBDoE). MIDDoE offers a modular and flexible workflow
that accounts for process constraints and solver flexibil-
ities, making it suitable for various physical systems and
computational platforms. Part of these capabilities,
aimed at improving the precision and accuracy of estima-
tions, along with the application of estimability analysis
and model-based design of new experiments, are
demonstrated using an in-silico case study.
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