
 
  Research Article - Peer Reviewed Conference Proceeding 

ESCAPE 35 - European Symposium on Computer Aided Process Engineering 
Ghent, Belgium. 6-9 July 2025 

 Jan F.M. Van Impe, Grégoire Léonard, Satyajeet S. Bhonsale, 
Monika E. Polańska, Filip Logist (Eds.) 

https://doi.org/10.69997/sct.192104  Syst Control Trans 4:1282-1287 (2025) 1282 

A Python/Numpy-based package to support model 
discrimination and identification 
Seyed Zuhair Bolourchian Tabrizia,b, Elena Barberaa, Wilson Ricardo Leal da Silvab, and Fabrizio 
Bezzoa* 
a Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova PD, Italy 
b FLSmidth Cement, Green Innovation, Denmark  
* Corresponding Author: fabrizio.bezzo@unipd.it.   

ABSTRACT 
Addressing challenges in process design and optimisation, especially with complex models and 
data uncertainties, requires effective tools for model development, selection, and identification. 
Techniques such as Model-based Design of Experiments (MBDoE) help support this task by 
screening and discriminating between models and, eventually, calibrating them. Open-source and 
user-friendly Python packages have implemented some model identification techniques. However, 
the need for a tool that can couple with various model simulators and account for the steps of 
model identification as well as physical constraints of systems in design of experiments remains 
unmet. In that light, we present the python package MIDDOE (Model-(based) Identification, Dis-
crimination, and Design of Experiments) to address this gap. It integrates rival models screening, 
parameter estimation, uncertainty analysis, and MBDoE techniques, while adapting to various pro-
cess constraints. These functionalities are demonstrated via an in-silico study for a semi-batch 
fermentation reactor model identification. 
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INTRODUCTION  
Process design and optimisation often requires the 

precise determination of underlying phenomena and 
identification of accurate models to describe them. This 
process becomes complex when multiple rival models 
and high uncertainty exist, and is further complicated by 
the costly data required for model discrimination and cal-
ibration. To address these challenges, numerical tech-
niques have been introduced to streamline the pre-dis-
crimination stage by screening models and narrowing the 
pool of candidates without additional experimental effort. 
Building on these techniques, MBDoE methods have 
been developed to design new experiments that maxim-
ize information, enabling easier discrimination between 
rival models (MBDoE-MD) [1]. Additionally, they reduce 
the confidence ellipsoid volume of estimated parameters 
by enriching the information matrix (MBDoE-PP) via opti-
mal experiment design [1]. 

Open-source Python packages, most notably 

PYOMO [2], are essential tools for digital modeling 
frameworks. PYOMO facilitates parameter estimation us-
ing Parmest [3] and supports MBDoE-PP through DOE 
[4]. Despite many advantages in integrating with the 
PYOMO ecosystem, these tools have some limitations. 
They are effective when screening, reparametrizing, and 
discriminating between models are not required. Addi-
tionally, they rely on PYOMO's array and model structure, 
which makes them incompatible with other types of sim-
ulators. This dependency limits their flexibility in handling 
diverse model structures, solvers, and constraints re-
lated to design decisions. Another significant limitation is 
the lack of coherence in problem definitions across the 
entire workflow. This arises from the need to use differ-
ent packages for tasks such as screening, identifying, 
designing experiments, validating, and illustrating results. 
Additionally, some of these tools are not readily available, 
further complicating the workflow. 

These gaps are here addressed by proposing the  
Python package MIDDOE 
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(https://pypi.org/project/middoe), which wraps dynamic 
lumped models using standard Python/NumPy arrays and 
integrates seamlessly with simulators. MIDDOE provides 
tools not only for calibrating models, but also for screen-
ing, discriminating, and validating models. It provides 
flexibility to perform these tasks using local methods 
(single start or multi-core, multi-start) as well as global or 
joint methods (multi-core) ensuring high computational 
efficiency. 

The package offers MBDoE techniques tailored for 
both discrimination and calibration, specifically adapted 
to the physical constraints of experimental campaigns 
and apparatus.  Key features include options for enforc-
ing constraints on design decisions and cost functions, 
with the flexibility to structure MBDoE optimization prob-
lems to accommodate these limitations. This functionality 
significantly aids experimenters in designing feasible and 
optimal experiments. 

Finally, MIDDOE emphasizes user-friendliness by 
clearly distinguishing model components and enabling 
one-time definitions for all techniques, eliminating addi-
tional programming. Designed as a numerical wrapper, it 
can integrate with external simulators or internal Py-
thon/NumPy functions, enabling non-expert users to 
avoid specific programming syntaxes. Data import is sim-
plified by allowing experimental data to be added as Ex-
cel files, organized into batches using separate sheets. It 
supports various data input types and automates the 
generation and restoration of results, data, and figures. 
By representing its structure, we demonstrate a part of 
its novel capabilities through an in-silico experimental 
campaign for identifying a generic model.  

PACKAGE ARCHITECTURE  
MIDDOE is a Python library designed to provide a 

modular structure (see Figure 1) for performing essential 
model identification steps. These steps include: 1) setting 

up models and configuring control variables and con-
straints; 2), 3) screening models with sensitivity and es-
timability analyses; 4), 5) parameter estimation and un-
certainty analysis; 6), 7) designing experiments for model 
discrimination and parameter precision; and 8) model val-
idation.  The package organizes these steps into a user-
friendly syntax, beginning with the first step, which in-
volves importing the model(s) for the identification prob-
lem and defining structured dictionaries to symbolically 
decode and classify model components. Models are im-
ported as Differential-Algebraic Equations (DAEs) and 
solved using a method that efficiently handles both stiff 
and non-stiff problems simultaneously. Variables are cat-
egorized as time-variant or time-invariant inputs and out-
puts, while parameters are addressed separately. The 
design space, along with its associated physical con-
straints, is also defined, followed by specifying the solver 
properties. Furthermore, each module requires and re-
ceived its own specific properties to ensure flexibility and 
adaptability. 

For screening methods, the software includes two 
advanced techniques: Global Sensitivity Analysis (GSA) 
using the Sobol method [5] and Estimability Analysis (EA) 
using the orthogonalization method [6] corresponding to 
steps 2 and 3, respectively. EA, a key feature of the pack-
age, helps restructure parametrically complex models by 
ranking parameters from higher to lower significance. 
This analysis introduces a methodology for calculating 
corrected critical ratios and selecting an optimal subset 
of parameters for estimating, prioritizing those with the 
lowest corrected critical ratios. This selection ensures 
that the model structure avoids over-parameterization 
and biases. 

Once the set of rival models is defined, parameter 
estimation and uncertainty analysis are employed to as-
sess the precision of estimations and the predictability of 
the identified model, corresponding to steps 4 and 5. 
These steps are carried out with the flexibility to choose 

 
Figure 1: Model identification logic and modules provided in the package. 
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between global, gradient-free methods or local, gradi-
ent-based methods, supported by an internal Finite Dif-
ference Method (FDM) auto-differentiator. A key practi-
cal feature of the package addresses scenarios where 
the experimental campaign fails to effectively discrimi-
nate between rival models. In such cases, MBDoE-MD [7] 
is proposed as step 6. Similarly, MBDoE-PP is utilized in 
step 7 to design experiments that improve parameter 
precision in the selected model. Both modules offer flex-
ibility in cost function selection, addressing discrimina-
tion and precision goals while incorporating physical con-
straints into the MBDoE framework.  

Finally, an identified model can undergo iterative 
validation tests against experimental batches in step 8 to 
assess its robustness. Our proposed package also in-
cludes additional visualization tools to support the con-
clusions of the modeling campaign, such as: 

• model fitting with calibration and validation data, 
• visualization of inter-parametric confidence el-

lipsoid areas and hyper-ellipsoid volume shrinkage, 
• parameter precision evaluation via t-values and 

confidence interval changes across batches, and 
• p-value comparisons across models.  

CASE STUDY AND RESULTS  

Model structure and design space 
As a matter of example, the software applies esti-

mability analysis (step 3) and MBDoE-PP (step 7). How-
ever, executing steps 1, 4, and 5 is necessary to support 
these tasks. Simplified in silico simulated experiments 
with a normally distributed noise of 5% on both of the re-
sponses are considered using a generic Monod model 
[8]. This model predicts the concentrations of biomass 
(𝐲𝐲𝟏𝟏 [g. L−1]) and substrate (𝐲𝐲𝟐𝟐 [g. L−1]) in a semi-batch 

fermentation reactor with continuous feed. Table 1 pre-
sents the process model parameters for Eqs. (1) to (3), 
while Table 2 presents the design space for input varia-
bles. The experimental campaign begins with 2 experi-
ments at the center, and maximum of design space 
boundaries, followed by up to five MBDoE-designed ex-
periments. Each experiment has a budget of 6 sampling 
points and spans a duration of 10 hours. The use of E-
optimality criterion ensures parameter precision exceeds 
the t-value threshold for all parameter estimations. 

𝜕𝜕𝑦𝑦1(𝑡𝑡)
𝜕𝜕𝜕𝜕 = (𝑟𝑟 − 𝑢𝑢1(𝑡𝑡) − 𝜃𝜃4) ∙ 𝑦𝑦1(𝑡𝑡) (1) 

𝜕𝜕𝑦𝑦2(𝑡𝑡)
𝜕𝜕𝜕𝜕 = −

𝑟𝑟 ∙ 𝑦𝑦1(𝑡𝑡)
𝜃𝜃3

∙ 𝑢𝑢1(𝑡𝑡)(𝑢𝑢2 − 𝑦𝑦2) (2) 

𝑟𝑟 = �
𝜃𝜃1 ∙ 𝑥𝑥2
𝜃𝜃2 + 𝑥𝑥2

� ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑥𝑥2
𝜃𝜃5
� (3) 

Estimability analysis 
After providing the necessary information and spec-

ifications as domain knowledge (step 1) to the software 
and simulating the initial experiments, the initial observa-
tion matrix is formed. Then, this matrix is used for esti-
mation of parameters (steps 4, and 5), providing enough 
information to return to Step 3: Estimability Analysis. This 
step evaluates the significance ranking of parameters 
and derives the optimal subset for estimation. The rank-
ing of parameters based on their significance, from high-
est to lowest, is 𝜃𝜃4,  𝜃𝜃3,  𝜃𝜃1,  𝜃𝜃5, and 𝜃𝜃2  for the first exper-
iment observations, and 𝜃𝜃1,  𝜃𝜃4,  𝜃𝜃3,  𝜃𝜃5, and 𝜃𝜃2 for the 
combined observations from the first and second exper-
iments. 

Based on this ranking, the estimability analysis cal-
culates the corrected critical ratios for the estimated 

Table 1: True parametric values for in-silico experiments and their definitions in Monod model. 

Parameter Units Value Definition 
𝜃𝜃1 [h−1] 0.31 Maximum specific growth rate 
𝜃𝜃2 [g. L−1] 0.11 Michaelis constant  
𝜃𝜃3 [−] 0.65 Yield coefficient 
𝜃𝜃4 [h−1] 0.25 Biomass loss rate due to non-modeled factors 
𝜃𝜃5 [g. L−1] 5.00 Substrate inhibition constant 

Table 2: Design space for time-invariant and -variant process controls in Monod model. 

Variable Units Range Approximation Profile Definition 
𝑦𝑦1,0 [g. L−1] 1 − 10 − Biomass initial concentrations  
𝑦𝑦2,0 [g ∙ L−1] 1 − 10 − Substrate initial concentrations  
𝐮𝐮𝟏𝟏 [h−1] 0.05 − 0.2 Constant Piecewise-re-

laxed 
Time-variant dilution rate 

𝐮𝐮𝟐𝟐 [g ∙ L−1] 5 − 35 Constant Piecewise-de-
creasing 

Time-variant feed substrate concentration 
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subset of parameters as illustrated in Figure 2. With a lim-
ited observation matrix, it suggests retaining 𝜃𝜃4 and 𝜃𝜃3 
and with an extended one it suggests retaining 𝜃𝜃1, 𝜃𝜃4, and 
𝜃𝜃3, as these correspond to the subset with the lowest 
critical ratio. For both cases, 𝜃𝜃2 and 𝜃𝜃5  are evaluated as 
insignificant and suggested to be dropped out in the 
identification procedure by fixing them to their rough es-
timation. This approach aligns with the t-values (a preci-
sion metric based on the 95% confidence intervals of pa-
rameters after estimation) obtained at the end of the 
identification campaign, viz. Figure 3 that indicates 
greater uncertainty in the estimation of 𝜃𝜃2 with a t-value 
of 0.006. 

 

Figure 2: Corrected critical ratios across parameter 
subsets. 

Assuming no additional experimental budget is 
available and avoiding further experimentation, 𝜃𝜃2 
and 𝜃𝜃5 are fixed, resulting in a reduced model with only 
three parameters to estimate. This reduced model is sub-
sequently employed for parameter estimation (Steps 4 
and 5). It achieves a slight improvement in accuracy for 
all parameters by shifting the Probability Density Func-
tion (PDF) of estimates closer to the true values. Addi-
tionally, it significantly enhances precision, as indicated 
by the narrower distribution and more reliable estimates, 
although the t-values of 𝜃𝜃1, and 𝜃𝜃3  remain below the ref-
erence threshold of 2.08. 

This module is particularly effective in scenarios 
with limited experimental budgets, where accurate pre-
dictions and precise estimation of key parameters are 
critical. However, to avoid structural simplifications and 
achieve higher precision in estimating the original model, 
we revert to its full form and design new experiments. In 
Step 7 (Figure 1), MBDoE-PP is employed to design new 
experiments, enhance the information content of the ob-
servation matrix, and estimate all parameters with ac-
ceptable precision.  

Figure 3: Estimation PDFs, mean and 95% t-values for 
a) 𝜃𝜃1, b) 𝜃𝜃2, c) 𝜃𝜃3, d) 𝜃𝜃4, and e) 𝜃𝜃5, for the initial experi-
ments (Scenario 1), reduced model (Scenario 2), and 
MBDoE-assisted campaign (Scenario 3). 
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Model-based design of experiments 
The MBDoE-related designs incorporate constraints de-
tailed in Table 2 and additional physical constraints to 
demonstrate the capabilities of the code. These con-
straints include three switching times for time-variant 
controls, with a minimum signal variation of 𝐮𝐮𝟏𝟏 and 𝐮𝐮𝟐𝟐 set 
at 0.015 [h−1] and 3.0 [g ∙ L−1], respectively. Switching 
and sampling times are required to have a minimum in-
terval of 15 minutes, and additional sampling is prohibited 
during the first and last 15 minutes of the experimental 
campaign. Not only the signal levels of controls but also 
the switching times and sampling times are part of the 
design decisions in the MBDoE-PP optimization problem.  

The design decisions for the MBDoE problem are 
obtained using a global-local joint optimisation algorithm 
that employs Differential Evolution for the initial explora-
tion of the design space, followed by Sequential Quad-
ratic Programming (SQP) with a trust-region method for 
refinement. These results are illustrated in Figures 4a and 
4c, showing that all obtained results comply with the pre-
viously enforced physical constraints of the system. 

By simulating the experiments and complementing 
the observations matrix, steps 4 and 5 are repeated. The 
model is successfully identified using only two MBDoE-
designed experiments when the t-value for all parame-
ters exceeds the reference threshold of 2.02, while pre-
dictivity remains high with R2=0.98. Figures 4b and 4d il-
lustrate the model's behaviour in comparison with the 

experimental data, and Figure 3 summarizes the accu-
racy and precision achieved with this approach after the 
identification procedure. 

The MBDoE-assisted experimental campaign im-
proves the likelihood of identifying parameters previously 
considered insignificant or difficult to estimate with ac-
ceptable precision. These estimations are not only pre-
cise but also accurate, closely aligning with the true pa-
rameter values. However, in cases of limited experi-
mental budgets or when restructuring the system or re-
producing samples is infeasible, estimability analysis can 
help identify a predictive model that remains acceptably 
precise.  

CONCLUSION  
We present a new Python library (MIDDoE) designed 

to perform essential model identification steps, including 
rival model screening, parameter estimation, uncertainty 
analysis, and model-based design of experiments 
(MBDoE).  MIDDoE offers a modular and flexible workflow 
that accounts for process constraints and solver flexibil-
ities, making it suitable for various physical systems and 
computational platforms.  Part of these capabilities, 
aimed at improving the precision and accuracy of estima-
tions, along with the application of estimability analysis 
and model-based design of new experiments, are 
demonstrated using an in-silico case study. 

 
Figure 4: Control vectors u1 and u2 for a) 1st, and c) 2nd MBDoE designed experiments and experimental data and 

corresponding model responses y1 and y2  for b) 1st, and d) 2nd MBDoE designed experiments  
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