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A B S T R A C T

Mathematical modelling plays a critical role in the design, optimisation, and control of dynamic systems in the 
process industry. While mechanistic models offer strong explanatory and predictive power, their effectiveness 
depends on informed model selection and precise parameter calibration. Model-based design of experiments 
(MBDoE) provides a framework for addressing these challenges by designing experiments that accelerate model 
discrimination and parameter precision tasks. However, its practical application is frequently constrained by 
fragmented digital tools that lack integration and make MBDoE implementation a task for expert users. To 
address that – thus supporting the widespread use of MBDoE – MIDDoE, a modular and user-friendly Python- 
based framework centred on MBDoE is introduced. MIDDoE supports both model discrimination and parameter 
precision design strategies, incorporating physical constraints and non-convex design spaces. To provide a 
comprehensive MBDoE digital tool, the framework integrates numerical techniques such as Global Sensitivity 
Analysis, Estimability Analysis, parameter estimation, uncertainty analysis, and model validation. Its architec
ture decouples simulation from analysis, enabling compatibility with both built-in and external simulators, which 
allows MIDDoE to be applied across different systems. MIDDoE practical application is demonstrated through two 
case studies in bioprocess and pharmaceutical systems for model discrimination and parameter precision tasks.

1. Introduction

Mechanistic models are cornerstones in the development, optimisa
tion, and control of engineered systems, offering predictive capabilities 
that extend beyond experimental observations (Buede, 2024; Pistiko
poulos et al., 2021). Based on first principles, their reliability depends on 
a representative model structure and precisely estimated parameters. 
However, achieving predictive reliability is challenging: sparse data, 
parameter correlations, and structural ambiguities often compromise 
early-stage modelling. These limitations highlight the need for targeted 
data acquisition and rigorous model identification strategies to reduce 
uncertainty and improve predictive performance, a challenge that calls 
for Model-Based Design of Experiments (MBDoE).

MBDoE is tailored for mechanistic models, explicitly accounting for 
physical laws and meaningful parameters (Franceschini and Macchietto, 
2008). It frames experiment planning as an optimisation problem, 
aiming to maximise the information content of data – either to increase 
the predictive divergence between candidate models and accelerate 
model discrimination (MBDoE-MD) (Hunter and Reiner, 1965), or to 

improve the precision of parameter estimates (MBDoE-PP) (Espie and 
Macchietto, 1989). This approach proved effective in reducing experi
mental burden, material usage, and measurement costs, while max
imising mechanistic insight and valuable in applications involving 
complex, nonlinear dynamic systems, where experimentation is 
resource-intensive (Geremia et al., 2026).

Despite these demonstrated benefits, MBDoE remains a niche 
methodology in practice. Its application is limited by the need for 
computational literacy and familiarity with optimisation strategies. 
Additionally, the lack of accessible and physics-aware digital tools limits 
broader implementation among experimentalists and industrial practi
tioners (Geremia et al., 2026). Moreover, the practical effectiveness of 
MBDoE depends on its application following a rigorous 
pre-experimental analysis – particularly in terms of parameter signifi
cance and estimability – which requires holistic workflows for param
eter ranking and identifiability assessment prior to experiment design.

Transforming MBDoE from a niche approach into a widely practical 
methodology requires more than simply addressing an optimization 
problem: it demands integrated workflows that begin with Global 

* Corresponding author.
E-mail address: fabrizio.bezzo@unipd.it (F. Bezzo). 

Contents lists available at ScienceDirect

Digital Chemical Engineering

journal homepage: www.elsevier.com/locate/dche

https://doi.org/10.1016/j.dche.2025.100276

Digital Chemical Engineering 17 (2025) 100276 

Available online 22 November 2025 
2772-5081/© 2025 The Author(s). Published by Elsevier Ltd on behalf of Institution of Chemical Engineers (IChemE). This is an open access article under the CC 
BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

https://orcid.org/0000-0001-6321-2762
https://orcid.org/0000-0001-6321-2762
https://orcid.org/0000-0001-9895-5128
https://orcid.org/0000-0001-9895-5128
mailto:fabrizio.bezzo@unipd.it
www.sciencedirect.com/science/journal/27725081
https://www.elsevier.com/locate/dche
https://doi.org/10.1016/j.dche.2025.100276
https://doi.org/10.1016/j.dche.2025.100276
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sensitivity Analysis (GSA) to identify influential inputs (Saltelli et al., 
2006) and Estimability Analysis (EA) to determine which parameters 
can be reliably estimated to assist MBDoE in correctly assigning the 
explorative budget (Cobelli and DiStefano, 1980). These steps are crit
ical in nonlinear dynamic systems, where parameter identifiability may 
vary across the design space, and uninformed experiments risk targeting 
insensitive or weakly identifiable parameters. For an effective MBDoE 
use, the method must be embedded within a holistic modelling work
flow that integrates initial diagnostic steps with complementary tasks 
such as parameter estimation, uncertainty analysis, and validation. 
Digital tools that are physics-aware, constraint-capable, and flexible 
enough to adjust to real-world process specifications are also necessary 
for the practical implementation of such a comprehensive MBDoE usage, 
particularly in industrial environments (Geremia et al., 2026).

While the conceptual foundation of MBDoE is well established, 
available software remain limited. In the area of MBDoE-MD, digital 
implementations are rare. A notable exception is GPdoemd (Olofsson 
et al., 2019), an open-source Python package that employs Gaussian 
Process (GP) surrogates to represent mechanistic models as black boxes, 
enabling gradient-free optimisation (Harris et al., 2020; Olofsson et al., 
2019). It supports a variety of divergence-based design criteria – from 
Hunter–Reiner to Jensen–Rényi divergence – and includes modules for 
parameter estimation, model selection, and post-processing (Rényi and 
Renyi, 1965; Vanlier et al., 2014). However, some issues are not solved 
yet, including the absence of sampling time optimisation, limited sup
port for Control Vector Parameterisation (CVP), insufficient enforce
ment of physical constraints, and elevated uncertainty in GP predictions 
for highly nonlinear systems.

In contrast, DoE-SINDy (Lyu and Galvanin, 2025) consists in a 
recently introduced Python-based framework that targets automated 
kinetic model discovery when first-principles formulations are unavai
lable or uncertain as a complementary problem. It uses the Sparse 
Identification of Nonlinear Dynamics (SINDy) approach to construct 
interpretable differential equations directly from time-series data 
(Brunton et al., 2016). The current version iteratively improves model 
quality by augmenting the training dataset with new experiments and 
validating structural and statistical adequacy at each step. It does not yet 
include MBDoE capabilities, but these are expected to be added in future 
work.

In contrast, several tools have been developed to support MBDoE-PP. 
At present, the commercial platform gPROMS by Siemens (https://www. 
siemens.com/global/en/products/automation/industry-software/gpro 
ms-digital-process-design-and-operations.html) offers the most 
comprehensive implementation, supporting various optimality criteria, 
constant and linear piecewise CVPs, and advanced solvers for nonlinear 
and non-convex problems. However, as a proprietary software, it may 
restrict user customisation (which can be a drawback when adapting to 
experimental constraints), lacks support for MBDoE-MD, and does not 
offer features for defining uncontrollable and forced control regions, and 
signal perturbation constraints.

EFCOSS, Pydex, and PYOMO.DOE are the three prominent open- 
source Python tools that support MBDoE-PP. EFCOSS (Rasch and 
Bücker, 2010) is a modular framework based on the Cobra platform, 
enabling distributed coupling between simulators and optimisers. 
Despite its flexibility, it requires considerable programming skills from 
the user, lacks support for alternative MBDoE-PP criteria, and delegates 
data handling and post-processing to the user. Pydex (Kusumo et al., 
2022) employs a continuous-effort approach that improves robustness 
and mitigates non-convexity, but may compromise optimality where 
sequential updating is feasible, or may demand increased computational 
resources for larger design spaces. PYOMO.DOE (Wang and Dowling, 
2022) integrates experiment design within the PYOMO algebraic 
modelling framework and supports differential-algebraic systems 
(DAEs) through PYOMO.DAE, along with parameter estimation via 
PYOMO.Parmest (Klise et al., 2019; Nicholson et al., 2018). PYOMO has 
been extended to support external solvers and to interface with external 

models, including input-output (GreyBox) models via PyNumero (Laky 
et al., 2022; Rodriguez et al., 2020). However, setting up such interfaces 
may still be challenging for inexperienced users.

Although each tool offers distinct capabilities, the most complete 
ecosystems are currently found in gPROMS and PYOMO.DOE, since they 
partially integrate several elements of a model identification workflow. 
Both provide parameter estimation, uncertainty analysis, and post- 
processing capabilities, but neither includes built-in EA or support for 
MBDoE-MD. gPROMS includes built-in GSA and proprietary solvers, 
whereas PYOMO.DOE requires external solvers for optimisation and 
simulation tasks, as well as third-party libraries – such as SALib 
(Iwanaga et al., 2022) – to perform GSA. Both frameworks are tightly 
coupled to their native environments which can add complexity in 
enforcing advanced constraints within the design space. This is a chal
lenge for users with limited programming experience and increases the 
computational overhead required for model integration and tool 
interoperability.

To overcome the shortcomings of current tools in offering a 
comprehensive platform for MBDoE, an open-source Python package 
called MIDDoE (Model-(based) Identification, Discrimination, and 
Design of Experiments) is presented here. MIDDoE, recently introduced 
in a preliminary form for parameter estimation (Tabrizi et al., 2025), 
integrates the core components of a model identification workflow 
required to support MBDoE in dynamic systems. It includes GSA and EA 
for early-stage evaluation of the model structure and design space, and 
also includes modules for parameter estimation, uncertainty analysis, 
validation, and post-analysis. These features collectively support the 
core functionalities of MBDoE for model discrimination and parameter 
precision within a single, cohesive, open-source, and common Python 
environment. MIDDoE adopts a modular architecture for identification 
process organised into kernel, logic, and client conceptual layers, as 
illustrated in Fig. 1.

In contrast to existing tools, MIDDoE aims at taking a step forward by 
not only integrating the full range of functionalities needed to support 
MBDoE at varying levels of user expertise, but also embedding a dedi
cated optimisation core. This core enables the incorporation of physical 
and operational constraints as well as flexible solver configurations for 
tackling non-convex optimisation problems. Additionally, the package 
facilitates seamless integration with external simulators – such as 
gPROMS – increasing its applicability across diverse scientific and en
gineering domains.

This article is structured as follows. Section 2, methods and mathe
matical framework, describes the theoretical basis of model identifica
tion as well as the numerical techniques implemented in MIDDoE to 
support it. Section 3, package architecture, outlines the modular struc
ture of the software, along with the execution capabilities and technical 
specifications of the implemented methods. Section 4 presents two case 
studies are used to demonstrate the practical use of MIDDoE to address 
model identification problems in practical case studies. Finally, the 
conclusions summarise the core features, main findings, and future di
rections of this work in Section 5.

2. Methods and mathematical framework

MIDDoE integrates various numerical techniques. This section out
lines the mathematical foundation upon which these techniques are 
implemented. Only the techniques implemented within MIDDoE are 
discussed.

2.1. Definition of dynamic models

The formulation is grounded in the theory of dynamic systems and 
adopts a general nonlinear parametric model structure, consistent with a 
multiple-input, multiple-output (MIMO) system, denoted as M(θ): 
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M(θ, x(t),u(t), z(t),w ) :

⎧
⎪⎪⎨

⎪⎪⎩

f(ẋ(t), x(t),u(t), z(t),w, θ) = 0

g(x(t),u(t), z(t),w, θ) = 0

y(t) = h(x(t),u(t), z(t),w, θ)

(1) 

This formulation is characterised by the following components: 

• θ ∈ RNθ : Vector of model parameters to be estimated, indexed by the 
set {1, ...,Nθ}.

• x(t) ∈ RNx× 1: Time-variant state variables governed by the differ
ential equation f , represented over time as a matrix X ∈ ℜNx×Nt .

Fig. 1. Conceptual layers of MIDDoE: (1) the kernel layer handles model simulation (built-in or externally interfaced) and internal data flow; (2) the logic layer 
implements MBDoE alongside essential identification steps including GSA, EA, parameter estimation, uncertainty analysis, and validation; (3) the client layer enables 
user-level configuration, execution, and post-analysis.

Fig. 2. Input/output structure of the core techniques implemented in the MIDDoE logic layer, including: (1) GSA; (2) parameter estimation and uncertainty analysis; 
(3) EA; (4) MBDoE; and (5) model validation.
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• z(t) ∈ RNz× 1: Time-variant state variables governed by the algebraic 
equation g, represented over time as a matrix Z ∈ ℜNz×Nt .

• u(t) ∈ RNu× 1: Time-dependent control inputs (manipulated vari
ables), represented over time as a matrix U ∈ ℜNu×Nt .

• w ∈ RNw : Time-invariant control inputs.
• y(t) ∈ RNr× 1: Measured state variables, indexed by the set {1,...,Nr}, 

and related to the model predictions by: y(t) = ŷ(t) + ε(t) where ŷ(t)
is the corresponding predicted value and ε(t) represents the mea
surement noise or modelling error. It is represented over time as a 
matrix Y ∈ ℜNr×Nt .

• t ∈ ℜNt× 1: Time vector encompassing all control and measurement 
time points.

With M(θ) representing the generic structure of candidate models, 
the implemented techniques – forming the backbone of the previously 
introduced logic layer (Fig. 1) for identification of such systems – are 
outlined in Fig. 2. This flowchart illustrates the theoretical inputs and 
outputs of the methods supported by MIDDoE, which are subsequently 
detailed in the following sections.

2.2. Global sensitivity analysis

GSA methods are developed to evaluate the influence of model in
puts – parameters θ, time-variant controls u(t), time-invariant controls 
w – on the state variable trajectories x(t) and z(t) across the entire 
feasible input space. These approaches account for nonlinear de
pendencies and higher-order interactions, thereby offering more 
comprehensive and informative insights into system behaviour (Saltelli 
et al., 2010). Among GSA methods, Sobol’s method (Sobol’ IM, 1990) is 
one of the most robust and widely used variance-based GSA techniques. 
It enables the estimation of first-order (S1) and total-order (ST) Sobol 
indices for each model output across time and model instances, making 
it particularly suitable for complex, nonlinear, and dynamic systems.

This technique employs a Saltelli-type quasi–Monte Carlo strategy 
for global sensitivity quantification (Saltelli et al., 2010). The sampling 
approach is based on Sobol’ sequences, which are deterministic 
low-discrepancy sequences in [0, 1]d (where d is the number of input 
variables) that uniformly cover the unit hypercube. The sequences are 
scrambled using a mix of Left Matrix Scrambling (LMS) and a digital 
random shift, which is referred to as LMS+shift (Owen, 1998), in order 
to improve uniformity and mitigate structural correlations. This trans
forms the deterministic Sobol’s sequence into a randomized qua
si–Monte Carlo sample, preserving low-discrepancy characteristics 
while allowing for unbiased estimation and robust variance reduction. 
Further details on this transformation, as well as the evaluation of Sobol’ 
first-order and total-effect indices (S1, and ST) are provided in the 
Supplementary Material S1.

As illustrated in Fig. 2, this technique requires the nominal values of 
fixed inputs, the sampling space of studied inputs, the time vector, the 
model(s), and the number of samples in order to compute the sensitivity 
indices for each response across time and model instances.

2.3. Parameter estimation and statistical metrics

Identification of model parameters θ that best reproduce experi
mental observations, along with the evaluation of uncertainty in this 
stage, plays a pivotal role in guiding the model identification workflow. 
It forms the basis of MBDoE optimisation, and the metric to accept the 
adequacy and precision of identified model. Common cost functions 
employed in parameter estimation include Least Squares (LS), Weighted 
Least Squares (WLS), Maximum Likelihood Estimation (MLE), and Chi- 
Square (CS). These formulations are discussed in detail in the Supple
mentary Material S2.

After calibration of the candidate models, P-test is applicable, which 
quantifies the relative likelihood that each candidate model provides the 

best fit to the observed data. This method assigns a probability score Pi 
to each model i, reflecting its relative quality based on goodness-of-fit 
metrics.

The calculation is based on the Chi-Square values (χ2) obtained after 
parameter estimation for each model. Models with lower χ2 values are 
considered better descriptors of the system. The probability of the i-th 
model being the best among Nm candidates is defined following the 
formulation by (Galvanin et al., 2016): 

Pi = 1 −
1
/
χ2

i
∑NM

i=11
/
χ2

i
⋅100 (2) 

This normalised probability score allows direct comparison of model 
quality. A higher Pi indicates stronger evidence in favour of model i and 
supports effective model discrimination based on fit performance.

2.4. Uncertainty analysis and statistical metrics

Once the parameter estimates (θ̂) are obtained, the uncertainty in 
these estimates is quantified using either frequentist or asymptotic 
methods. The choice of method depends on the assumed model linearity 
and the degree of parameter identifiability. Regardless of the approach, 
the first step involves constructing a local sensitivity matrix Qr for each 
measured response r, defined as: 

Qr =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂ŷr

∂θ̂1

⃒
⃒
⃒
⃒
t1

⋯
∂ŷr

∂θ̂Nθ

⃒
⃒
⃒
⃒
t1

⋮ ⋱ ⋮
∂ŷr

∂θ̂1

⃒
⃒
⃒
⃒
tNsp

⋯
∂ŷr

∂θ̂Nθ

⃒
⃒
⃒
⃒
tNsp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(3) 

where ŷ(r,t) denotes model predictions, Nsp is the number of sampling 
points, and Nθ is the number of active parameters. This matrix lets 
construction of the Fisher information matrix I(θ̂, U, w) as: 

I(θ̂,U,w) =
∑Nr

r

∑Nr

rʹ
σ̃(r,rʹ)QT

r Qŕ + Σθ(θ̂)− 1
≈

∑Nr

r

∑Nr

ŕ

σ̃(r,rʹ)QT
r Qŕ (4) 

where prior information of parameters can be neglected (i.e., 
Σθ(θ̂)− 1

≈ 0), and σ̃(r,rʹ) are elements from the inverse of the variance- 
covariance matrix of measurements errors. The measurement noise 
structure across all responses is characterised by matrix Σy: 

Σy =

⎡

⎢
⎢
⎢
⎣

σ2
y1 ,y1

⋯ σ2
y1 ,yNr

⋮ ⋱ ⋮
σ2

yNr ,y1
⋯ σ2

yNr ,yNr

⎤

⎥
⎥
⎥
⎦

(5) 

I serves two key purposes: 

(i) Diagnosing the presence of sloppy parameters and ill- 
conditioning in the estimation problem, and selecting the un
certainty analysis method.

(ii) Enabling the approximation of the parameter var
iance–covariance matrix by inverting it (Vθ = I− 1) if an asymp
totic method is selected.

In particular, sloppy parameters correspond to directions in param
eter space where the model output is only weakly sensitive, resulting in 
very small eigenvalues of I. If the condition number of the Fisher matrix, 
defined as κ(I) = λmax/λmin, exceeds a critical threshold (typically 
κ > 103), the model is considered sloppy and if this number is extremely 
high, the matrix is ill-conditioned and the inversion of it creates sig
nificant errors in evaluation of the variance and covariance terms 
(Gutenkunst et al., 2007). This indicates possible non-identifiability of 
parameters with lower eigenvalues and reduced reliability of asymptotic 
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uncertainty estimates.
In cases of strong nonlinearity or poor identifiability, a frequentist 

approach such as bootstrapping is preferred for more robust uncertainty 
quantification (Efron, 1979). In such a technique, bootstrap resampling 
generates multiple synthetic datasets by drawing with replacement from 
the original data. Parameter estimation is repeated on each resampled 
set, and the resulting distribution of estimates reflects the underlying 
variability without requiring assumptions about linearity or normality.

The resulting covariance matrix Vθ(θ̂,U,w) from any of the dis
cussed methods is used to compute Confidence Interval (CIi) and t-value 
of estimated parameter θ̂ i at a confidence level of (1 − α) = 95%: 

CIi =
̅̅̅̅̅̅̅vθ,ii

√ ⋅t
(

1 − α
2

, DoF
)

for i = 1, ..., Nθ (6) 

ti =
θ̂ i
̅̅̅̅̅̅̅vθ,ii

√ , i = 1, ⋯, Nθ (7) 

where vθ,ii is the i-th diagonal element of Vθ, and t
(

1− α
2 , DoF

)

is the 

upper (1− α)
2 critical value of a Student’s t-distribution with DoF = Nsp − Nθ 

degrees of freedom.
The t-test provides a quantitative measure of estimation precision by 

statistically assessing whether each estimated parameter θ̂ i is signifi
cantly different from the parameter noise with a zero mean. This is 
verified by checking whether the computed ti-value exceeds the refer
ence threshold tref , corresponding to a Student t-value at the same 
confidence level (Galvanin, 2010).

When uncertainty is quantified using the Fisher information matrix, 
the analysis is inherently local because it relies on local sensitivities. In 
contrast, when uncertainty is assessed using bootstrapping, the pro
cedure is global.

Fig. 2 summarises the required inputs for these techniques, including 
data, model structures, the time vector, control input values, and the 
feasible parameter space. These inputs are used to estimate parameters 
and evaluate fitting quality metrics, followed by quantification of un
certainty through the variance-covariance matrix, 95% CIs, and corre
sponding t-values.

2.5. Estimability analysis

Model parameters can be assessed in terms of their capability to be 
uniquely and precisely estimated by performing an identifiability anal
ysis. It includes structural identifiability, which examines models under 
ideal conditions (infinite data, no noise), and practical identifiability 
(called estimability in some contexts), which considers real-world data 
limitations (Cobelli and DiStefano, 1980; Jacquez and Greif, 1985; Miao 
et al., 2011; Raue et al., 2009). Estimability analysis and parameter 
subset selection are key techniques to support MBDoE to assess the in
fluence of parameters, and fix the ones that cannot be estimated. Among 
different EA methods, the orthogonalisation method has emerged as a 
powerful, systematic, and computationally efficient local technique for 
ranking and selecting estimable parameters (Wu et al., 2011; Yao et al., 
2003). This method removes dependencies among parameters to ensure 
that each selected parameter contributes independently, and then, based 
on the influence on predictability, proposes the optimal active param
eter trade-off (top-k* ranked parameters) between biases caused by 
fixing of parameters and uncertainty introduced by over fitting. These 
methods are further explained in detail in the Supplementary Material 
S3.

The input and output structure of these techniques is summarised in 
Fig. 2, where the scaled sensitivity matrix is used for parameter ranking, 
and the parameter estimation procedure – along with its required inputs 
– is employed for parameter subset selection.

2.6. Model-Based design of experiments

The MBDoE-MD and MBDoE-PP are central techniques to accelerate 
the model discrimination and calibration by designing more informative 
experiments. The core of each MBDoE task is an optimisation, which 
solves for the decision vector φ =

[
u(t), w, tsp

]
, representing time- 

variant, -invariant controls, as well as the sampling times of measured 
state variables.

MBDoE-MD implements the T-optimality criteria, which seeks to 
maximise the divergence between competing model predictions. Two of 
the most used formulations are the Hunter and Reiner (HR) (Hunter and 
Reiner, 1965), and an extension on Buzzi-Ferraris and Forzatti method 
(BFF) (Chen and Asprey, 2003). The general form of the T-optimal 
design problem is expressed as: 

φOPT = arg max
φ ∈ Φ

∑Nsp

k=1

∑Nm

l=1

∑Nm

ĺ =1±1

Tl,ĺ (φ, θ̂, θ̂
ʹ
, t) dt (8) 

Tl,lʹ (φ, θ̂, θ̂
ʹ
, t)= (ŷl(φ, θ̂, t) − ŷlʹ (φ, θ̂

ʹ
, t))T

×Fl,lʹ ,t(ŷl(φ, θ̂, t) − ŷlʹ (φ, θ̂
ʹ
, t))
(9) 

where Nm denotes the number of competing models, θ̂ and θ̂
ʹ 

are the 
respective preliminary estimated parameter vectors for models l, and ĺ , 
Φ defines the feasible design space, and Fl,ĺ ,t is a weight factor based on 
the uncertainties in observation and parameter estimation at different 
sampling times, t ∈ RNsp× 1 which is 1 for ‘HR’. For the BFF, Fl,ĺ ,t in
corporates model sensitivity and covariance terms, and is defined at 
each sampling time t as: 

Fl,ĺ ,t = Σy + Wl,t + Wĺ ,t (10) 

where Σy is the variance-covariance matrix of measurement errors, and 
Wl,t and Wĺ ,t are representing the modeling error contributions, derived 
from the sensitivity of each model to its parameters. Each Wl,t is con
structed as: 

Wl,t = Ql,t Σ− 1
θ,l QT

l,t (11) 

where Ql,t is the sensitivity matrix of model l with respect to its estimated 
parameters θ̂l from the preliminary estimations, evaluated at time t: 

Ql,t =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ŷl,1(t, θ̂l)

∂θ̂ l,1
⋯

∂ŷl,1(t, θ̂l)

∂θ̂ l,Nθ

⋮ ⋱ ⋮

∂ŷl,M(t, θ̂l)

∂θ̂ l,1
⋯

∂ŷl,M(t, θ̂l)

∂θ̂ l,Nθ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12) 

This formulation also applies analogously to Wĺ ,t for model ĺ .
Conversely, MBDoE-PP aims to minimise parameter uncertainty by 

reducing the size of the confidence hyperellipsoid through optimisation 
of a scalar metric ψ[Vθ(θ̂,U,w)]. The MBDoE-PP problem is formulated 
as: 

φOPT = arg min
φ ∈ Φ

ψ[Vθ(θ,U,w)] (13) 

Several objective functions ψ [Vθ(θ̂,U,w)], commonly referred to as 
alphabetical criteria are widely used in this context and listed in Table 1
(Franceschini and Macchietto, 2008).

These formulations are described in detail with their geometric 
interpretation, advantages, and disadvantages in the Supplementary 
Material S4.

Fig. 2 summarises the inputs and outputs of this method, which relies 
on the estimated parameters and their associated variance–covariance 
matrix, along with the model(s), time vector, design space, and relevant 
physical constraints.
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2.7. Model validation

To assess the reliability and generalisation capability of estimated 
parameters, leave-one-out cross-validation (LOOCV) procedure (Stone, 
1974) is a widely used method. In each fold of this method, a part of data 
is withheld for validation, while the rest is used for model recalibration. 
The process is repeated, and performance metrics (e.g., R2, mean square 
error) are compared for both calibration and validation sets. Fig. 2
summarises the demanded inputs and expected outputs, as the tech
nique iteratively uses the parameter estimation and returns both cali
bration and validation predictive metrics.

3. Package architecture

3.1. Overview of the package architecture

MIDDoE, available at https://pypi.org/project/middoe and compat
ible with Python versions 3.9 and above, is designed to support the 
discussed model identification tasks through two service levels. The first 
targets end-users with limited programming experience, offering a 
wrapper-based execution pathway that follows a logical, stepwise 
sequence. The second provides a flexible interface for advanced users 
who wish to customise the logic of each method for complex experi
mental campaigns or methodological investigations. To ensure compu
tational efficiency – particularly in inner optimisation loops and 
numerical solvers – MIDDoE adopts a modular procedural programming 
approach. This structure reduces runtime overhead by eliminating un
necessary object instantiations and attribute lookups, while retaining 
the structural benefits of object-oriented design, such as abstraction and 
modularity (Calder et al., 1994).

The following sections elaborate on the conceptual architecture of 
MIDDoE (Fig. 1) and describe the role of each executive module in the 
layered structure.

3.2. Logic layer

Fig. 3 illustrates a structured model identification workflow, incor
porating the executive modules and their interdependencies. This 
application-oriented structure allows systematic execution of tasks such 
as GSA, parameter estimation, uncertainty analysis, EA, MBDoE and 
model validation. The workflow is initiated by specifying model struc
tures and available experimental data. In the absence of initial obser
vations, GSA (Fig. 3, Step 1) can be performed to explore the design 

Table 1 
MBDoE-PP alphabetical criteria.

Criterion Definition Mathematical 
form

Equation

D Reducing the confidence region size 
by minimising the determinant of the 
Vθ(θ̂,U,w).

ψD = det [Vθ(θ̂,
U,w)]

(14)

A Lowering the average variance across 
all parameter estimates by minimising 
the trace of Vθ(θ̂,U,w).

ψA = tr [Vθ(θ̂,U,

w)]

(15)

E Reducing the variance of the most 
uncertain parameter by minimising 
the biggest eigenvalue of Vθ(θ̂,U,w).

ψE = λmax [Vθ(θ̂,
U,w)]

(16)

ME Ensure uniform precision across 
parameters by minimises the 
condition number of the Vθ(θ̂,U,w).

ψME = κ[Vθ(θ̂,U,

w)]

(17)

Fig. 3. Model identification workflow implemented by MIDDoE. The key identification steps are indicated by numbers, while the executive software modules are 
marked with alphabetic labels. Solid arrows represent the model flow, and dashed arrows represent the data flow.
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space, inform the configuration of preliminary experiments, or rank the 
parameter significance.

Once measurements are available, preliminary model calibration 
and uncertainty quantification are performed (Fig. 3, Step 2). If multiple 
candidate models remain indistinguishable, MBDoE-MD is applied 
(Fig. 3, Step 4) to design experiments that maximise the divergence in 
their predictions. This process may be iterated alongside recalibration 
until a single model is preferred. If parameter uncertainty remains high, 
two complementary strategies are available: 

(i) EA (Fig. 3, Step 3), which reduces model complexity by fixing 
poorly identifiable parameters.

(ii) MBDoE-PP (Fig. 3, Step 4), which designs experiments to improve 
parameter precision.

These strategies may be applied separately or in tandem. Once a 
single, well-defined model is identified, it is validated (Step 5) through 
cross-validation and post-analysed for reporting.

3.3. Client layer

Data, models, and settings are the three main inputs, which each 
MIDDoE module depends on. To guarantee compatibility with experi
mental protocols, data are either imported as Excel files or supplied as 
Pandas DataFrames. Models are implemented as Python functions or as 
interfaces to external simulators, with configuration options supplied 
via user-provided dictionaries.

Two fundamental dictionaries – system and models, which serve 
as configuration hubs across all modules in MIDDoE, regulate how 
models and data are interpreted. The system dictionary establishes the 
model internal structure, specifying the state variables, determining 
which are measured, and setting measurement constraints as needed. It 
also distinguishes between time-invariant and time-variant controllable 
inputs and classifies the output variables, each constrained within user- 
defined feasible domains. The models dictionary determines how the 
model is loaded, identifies the parameters involved along with their 
corresponding bounds, and specifies the model interface – whether in
ternal, externally defined, or connected to third-party simulators – used 
to evaluate the model.

3.4. Kernel layer

MIDDoE is designed for the analysis of lumped dynamic systems 
(DAE systems), with time typically treated as the independent variable. 
However, for steady-state applications or models governed by alterna
tive independent variables, this convention can be adapted accordingly. 
Furthermore, MIDDoE supports certain classes of models involving 
Partial Differential Algebraic Equations (PDAEs), provided that the 
additional independent variable can be coarsely discretised and each 
segment response treated as discretised individual outputs (e.g., this 
occurs in some solution methods of population balance models). This 
flexibility enables the package to accommodate a broad spectrum of 
process systems and mechanistic model structures.

MIDDoE supports simulation of MIMO systems, denoted as M(θ), by 
referencing models through the models dictionary using one of four 
available methods: 

1. As a built-in DAE model selected from the krnl_models module;
2. As an externally defined DAE available in the global namespace;
3. As a user-defined black-box model in Python (or wrapped around 

external simulators);
4. As a gPROMS-based model accessed through an integrated simula

tion interface.

Regardless of the simulation backend, all models must conform to a 
standardised interface. The model function must accept the following 

five inputs: 

• t: A list of time points at which the model is evaluated;
• y0: The initial conditions for the differential state variables x(t);
• tii: A dictionary of time-invariant input controls representing w;
• tvi: A dictionary of time-variant input controls u(t), defined as time 

series;
• theta: A list of model parameters θ to be estimated.

The output must be a dictionary in which each key corresponds to a 
model response, and each value is a list representing the variable tra
jectory over the specified time vector.

This modular separation of simulation as an internal kernel enables 
MIDDoE to function as an extensible, modular framework. The same 
simulation engine can be called uniformly across sampling, parameter 
estimation, and input optimisation tasks, facilitating flexible experi
mentation across a wide range of dynamic systems.

3.5. Executive modules

The executive modules of the MIDDoE logic layer (Fig. 3) are further 
explained here to include implementation details of the aforementioned 
methods (see Section 2).

Module (a): sc_sensa – GSA
This module implements Sobol’s based-GSA (see Section 2.2) with 

support for parameter or control input sampling. It allows analysis over 
either the full feasible space or a damped region around nominal values. 
Parallel sampling and evaluation are supported to distribute samples 
across assigned logical CPUs, thereby reducing runtimes. Outputs 
include structured dictionaries of S1 and ST, indexed by model, time, and 
response.

Key features, and their corresponding configuration keywords are 
summarised in Table S2 together with additional implementation and 
execution details that are provided in the Supplementary Material S5.1.

Modules (b): iden_parmest – parameter estimation
Parameter estimation is defined as an optimisation problem 

employing various cost functions, including LS, WLS, MLE, and CS (see 
Section 2.3). Model responses are normalised by their maximum 
observed values across batches, and sample sizes are scaled by response 
type to promote consistency across outputs with differing dynamic 
ranges. The parameter space is normalised to [0, 1]Nθ to improve nu
merical stability and mitigate bias caused by differences in parameter 
magnitudes.

A variety of local optimisers, including Sequential Least Squares 
Programming (SLSQP), Nelder-Mead simplex (NMS), Broyden–
Fletcher–Goldfarb–Shanno (BFGS), Limited-memory BFGS (LMBFGS), 
and trust-region constrained (TC) methods as well as Differential Evo
lution (DE) for global search, are available solvers (Jorge Nocedal, 2006; 
Virtanen et al., 2020). To overcome the restricted exploratory of local 
optimisers, they can be executed in multi-start routines and parallel 
computing can be employed to prevent excessive runtimes. Parallelisa
tion assigns each optimisation task a randomly selected initial guess on a 
specific logical CPU, with the final solution chosen as the best among all 
converged tasks. These solvers operate within user-defined parameter 
bounds and can be initialised either randomly or from a nominal 
parameter vector, acting on the specified cost function.

Modules (c): iden_uncert – uncertainty analysis
This module constructs the sensitivity matrix with all terms 

expressed in the scaled parameter space to ensure numerical consis
tency. To balance non-linear errors from large perturbation steps with 
truncation errors from excessively small steps (especially in the presence 
of weakly varying responses), MIDDoE implements an adaptive step-size 
strategy. This strategy performs a mesh-independency test on the 
perturbation magnitude and selects a value near the plateau region, 
where the eigenvalues of the variance–covariance matrix Vθ remain 
approximately constant.
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To improve derivative accuracy, both forward (first-order) and 
central (second-order) schemes of Finite Difference Method (FDM) are 
available. Additionally, when the chosen optimiser supplies the Hessian 
(i.e., second derivatives of the objective), an asymptotic method lever
ages this information to estimate uncertainty directly. For enhanced 
robustness, a frequentist bootstrap approach is also implemented (see 
Section 2.4) and complemented with moment estimates based on trun
cated normal fits to the bootstrap parameter distributions (Casella and 
Berger, 2024).

An overview of estimation and uncertainty options, including solver 
types, objective functions, and output controls, is summarised in 
Table S3 together with executive details in the Supplementary Material 
S5.2.

Module (d): iden_expera – In silico Experimentation
This module generates synthetic experimental data for bench

marking numerical strategies. It can be used by supplying a settings 
dictionary that defines the true model, true parameters, type of error 
(absolute or relative), and batch setup controls. These values are treated 
as ground truth for the selected model. Simulations are conducted 
accordingly, after which synthetic noise is independently added to each 
measured response. The noise is sampled from a normal distribution 
with the absolute or signal relative standard deviations.

The generated data is automatically saved in .xlsx format for 
downstream analysis.

Module (e): sc_estima – EA
This module supports EA with orthogonalisation method (detailed in 

Section 2.5) to increase the effective degrees of freedom in mode iden
tification by identifying and fixing practically insignificant parameters. 
The module outputs the parameter ranking (relative to their original 
positions), the optimal subset size, the complete rcc profile (see the 
Supplementary Material S3), and the associated WLS cost function 
output values for diagnostic comparison.

Modules (f, g): des_md, anddes_pp – MBDoE-MD and MBDoE-PP
Physically adaptive MBDoE modules plays central role in MIDDoE by 

providing a systematic framework to design informative experiments for 
model discrimination (MBDoE-MD) and parameter precision (MBDoE- 
PP) (see Section 2.6). These modules act as high-level interfaces to a 
uniform architecture that separates the workflow into variable indexing 
and scaling, objective evaluation, optimisation kernel, and result 
reporting. This modularity ensures numerical consistency and compu
tational efficiency.

The MBDoE optimisation kernel of MIDDoE currently supports DE as 
a particle-based global optimiser, a Direct Search method (DS) (Hooke 
and Jeeves, 1961) as a gradient-free local optimiser, and a joint 
global-local strategy (DEPS) that refines global solutions through local 
search. These methods are embedded with hard constraints directly 
enforced within the optimisation, to address the strong non-convexities 
inherent in dynamic models and constraint formulations in sequential 
MBDoE problems. Computational efficiency and robustness against local 
minima are enhanced via multi-start strategies distributed across logical 
CPU cores with parallelisation. These approaches help by assigning each 
optimisation task a randomly selected initial guess to a specific logical 
CPU, and by selecting the best solution among all converged tasks.

These modules are designed to operate in iterative workflows, where 
model predictions, parameter estimates, and associated uncertainties 
are updated round by round.

MIDDoE accepts the specification of the decision vector φ through 
either scalar controls or CVPs, supporting piecewise-constant (CPF) and 
piecewise-linear (LPF) profiles, each subject to design space bounds and 
perturbation limits. The framework also supports physical and experi
mental constraints, such as the number and spacing of samples, inclu
sion and exclusion zones, forced sampling times, synchronisation of 
sampling across outputs, and switching constraints in control profiles.

An overview of configuration options for MBDoE-MD and MBDoE-PP 
and their executive details are summarised in Table S4 of the Supple
mentary Material S5.3.

Module (h): iden_valida – Cross-Validation
This module performs the LOOCV method (detailed in Section 2.7) 

treating each batch as a fold.
Module (i): iden_utils – Post-Analysis and Reporting
Designed to support result interpretation, this module generates vi

sual and tabular outputs, including design decision plots, estimability 
profiles, model fits, sensitivity indices, validation metrics, inter- 
parametric confidence regions, and the propagation of t-values and P- 
values after each experimental round for all the candidate models. All 
outputs are stored in .xlsx format for external analysis and in .jac 
format for maximal information retention and portability.

3.6. Package dependencies

The MIDDoE library depends on several external packages beyond 
the standard Python library to support its core functionalities. These 
dependencies provide essential statistical, mathematical, and compu
tational tools necessary for MIDDoE operation. All required packages are 
installed automatically with MIDDoE, ensuring a smooth and consistent 
setup process for users. Table 2 summarises these dependencies, 
including their specific versions and the roles they fulfil within the 
library.

3.7. Package limitations

MIDDoE has been developed with a focus on model identification and 
system analysis, which means that its simulation capabilities are 
intrinsically limited by those of SciPy when compared to mature 
modelling tools such as PYOMO and gPROMS. However, this limitation 
can be partially addressed by integrating MIDDoE with external simu
lators, even if at the cost of increased computational burden. Seamless 
integration with more advanced solvers as an internal model-solving 
capability could improve this computational bottleneck in future ver
sions. Such improvements would also enable the solution of PDAE 
models. Furthermore, MIDDoE currently lacks techniques to identify the 
feasible design space (Geremia et al., 2023), which would enable the 
detection of meaningful subsets of operating conditions – an important 
direction for future developments.

4. Using MIDDoE: Case studies

MIDDoE has been successfully employed in previous experimental 
studies investigating the kinetics of mineral carbonation (Tabrizi et al., 
2025). The following examples, executed with MIDDoE version 1.0.0, 
will be considered to provide more insight into the package applications: 

• Discrimination among candidate models: when only a limited number 
of experiments can be conducted, and the selection of the most 
representative model is hindered by minor divergence of models in 
predicting the phenomena, MBDoE-MD offers a powerful strategy. 

Table 2 
List of MIDDoE package dependencies including version numbers and func
tionality descriptions.

Package Version Functionality Reference

Numpy 2.0.2 Numerical computations, efficient array 
handling, and vectorised mathematical 
operations.

(Harris et al., 
2020)

Scipy 1.13.1 ODE solving, integration, interpolation, 
statistics, and basic constrained 
optimisation features.

(Virtanen 
et al., 2020)

Pandas 2.2.3 Managing, manipulating, and analysing 
tabular data, CSV and Excel file I/O.

(McKinney, 
2010)

Matplotlib 3.9.4 Visualisation of plots, charts, and 
graphs.

(Hunter, 2007)

Pymoo 0.6.1.3 Solving complex constrained 
optimisation problems.

(Blank and 
Deb, 2020)
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By optimising the informativeness of each experiment, this technique 
enhances the ability to distinguish between candidate models. Once 
a model is selected, parameters are estimated and their precision is 
evaluated. The identified model is subsequently validated to confirm 
its predictive ability. The first case study addresses a challenging 
model discrimination scenario, in which four competing models are 
expected to explain the observed phenomena.

• Parameter estimation: experimental data are available and no additional 
data can be obtained: in cases where the obtained data are insufficient 
to precisely calibrate the model parameters and no further experi
ments can be conducted, EA is employed to fix the unidentifiable 
parameters and minimise uncertainty, while maintaining acceptable 
predictive accuracy based on the available data. The second case 
study initially discusses this challenge, i.e. the identification of a 
model once the experimental campaign has concluded.

• Parameter estimation: designing new experiments under minimal experi
mental budget: when no prior information is available and the goal is 
to minimise the size of the experimental campaign, local identifi
ability issues may arise due to an ill-conditioned I. In such cases, EA 
is first employed to stabilise the MBDoE-PP process against numer
ical instabilities. Subsequently, MBDoE-PP is used to sequentially 
improve the quality of the experiment design, maximising the 
number of precisely estimable parameters until the experimental or 
computational budget is exhausted, or no improvement is observed. 
The second case study tackles also this second challenge, i.e. 
designing experiments under a limited budget for a model that suf
fers from estimability issues.

4.1. Case study 1: Discrimination among candidate models

This case study focuses on model discrimination within a fed-batch 
fermentation process for intracellular enzyme production by baker’s 
yeast. The system – described using an unstructured and unsegregated 
modelling framework – operates isothermally with a single growth- 
limiting substrate. The feed stream contains no product. The individ
ual steps of this workflow are described in detail below. The MIDDoE 
modules applied to construct a discriminative model identification 
workflow are shown in Fig. 4 and detailed as follows.

4.1.1. Step 1: Definition of the system and candidate models
Dynamic behaviour is characterised by biomass concentration (y1, 

g⋅L-1) and substrate concentration (y2, g⋅L-1), manipulated through the 
dilution rate (u1, h-1), feed substrate concentration (u2, g⋅L-1), and the 
initial biomass concentration (w1 = y1(0), g⋅L-1). Model MI (Eq. 18.a), a 
Monod-type formulation with maintenance, is assumed to represent the 
true system with true parameters as θI = [0.25, 0.25, 0.88, 0.09], and a 
feasible parameter space of ±50% for model calibration.

Three alternative kinetic models – MII (Eq. 18b, Canoid kinetics), MIII 
(Eq. 18c, linear growth), and MIV (Eq. 18d, Monod without mainte
nance) – are considered as candidate structures for discrimination. The 
goal is to evaluate whether experiment designs could effectively 
distinguish these candidates from the assumed true model, and if the 
MIDDoE is capable to perform the MBDoE-MD methods with following 
the physically constrained and bounded design space, represented in 
Table 3. The model formulations and parameter sets are adapted from 
(Chen and Asprey, 2003). 

MI(θ,U,Y) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1(t)
dt

= (r − u1(t) − θ4)y1(t)

y1(0) = w1

dy2(t)
dt

= −
ry1(t)

θ3
+ u1(t)(u2(t) − y2(t))

y2(0) = 0.01

r =
θ1y2(t)

θ2 + y2(t)

(18a) 

MII(θ,U,Y) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1(t)
dt

= (r − u1(t) − θ4)y1(t)

y1(0) = w1

dy2(t)
dt

= −
ry1

θ3
+ u1(t)(u2(t) − y2(t))

y2(0) = 0.01

r =
θ1y2(t)

θ2y1(t) + y2(t)

(18b) 

MIII(θ,U,Y) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1(t)
dt

= (r − u1(t) − θ3)y1(t)

y1(0) = w1

dy2(t)
dt

= −
ry1

θ2
+ u1(t)(u2(t) − y2(t))

y2(0) = 0.01

r = θ1y2(t)

(18c) 

MIV(θ,U,Y) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1(t)
dt

= (r − u1(t))y1(t)

y1(0) = w1

dy2(t)
dt

= −
ry1

θ3
+ u1(t)(u2(t) − y2(t))

y2(0) = 0.01

r =
θ1y2(t)

θ2 + y2(t)

(18d) 

To generate the in silico data, the assumed true model MI is simu
lated using known true parameter values by krnl_expera. Two batch 
experiments are designed and simulated over a 40-hour process time 
under the following operational conditions, aligned with the defined 
design space: 

• Experiment 1: u1(t) = 0.05 h-1, u2(t) = 30.00 g⋅L-1, w1 = 1.00 g⋅L-1

• Experiment 2: u1(t) = 0.10 h-1, u2(t) = 30.00 g⋅L-1, w1 = 1.00 g⋅L-1

For each output trajectory, 10 sampling points are uniformly 
distributed over the process duration. At each sampling time, mea
surement noise is introduced by adding normally distributed absolute 
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errors, with standard deviations of 15% for y1 and 10% for y2. This 
simulated noise reflects the experimental variability typically encoun
tered due to the different characterisation techniques employed.

4.1.2. Step 2: Calibration of candidate models
A WLS cost function and DE global optimisation algorithm are 

applied using iden_parmest to perform preliminary parameter 

estimation. DE is selected to reduce the likelihood of being trapped in 
local optima during parameter estimation and to avoid biases intro
duced by varying initial guesses.

Following calibration, parameter precision (t-value), and the prob
ability of each model being the true one (P-value) are evaluated using 
iden_uncert. These values are reported in Table 4, which highlights 
the relative likelihood of model MI being the correct representative, 
based on the highest P-value. Nonetheless, model MII also exhibits 
considerable predictive capability, indicating that additional data are 
needed to effectively discriminate between the top two candidates. All 
remaining models are excluded from the model discrimination 
campaign due to negligible P-values.

The performance of the two remaining candidate models is illus
trated against the observation points from the preliminary experiments 
in Fig. 5.

4.1.3. Step 3: Design of experiments using MBDoE-MD, followed by 
recalibration and model discrimination

To further discriminate between MI, and MII, a new experiment is 
designed using des_md, employing both the HR and BFF design criteria 
through joint optimisation strategy that combines DE and Direct Search 
for local refinement. This approach reduces the likelihood of the opti
miser getting trapped in suboptimal local minima while refining the 
solution locally. The MBDoE-MD optimisation incorporates the design 

Fig. 4. Model identification workflow implemented by MIDDoE for model discrimination in Case Study 1. The workflow includes the following steps: (1) definition of 
the system and candidate models followed by generation of in silico data; (2) calibration of candidate models; and (3) design of experiments using MBDoE-MD. 
Generation of data and steps (2)-(3) are repeated until the models are successfully discriminated and calibrated.

Table 3 
Design space and constraints.

Controls u1 u2 w1

Min 0.05 5 1
Max 0.2 35 5.5
CVP CPF LPF -
Steps 4 4 -
Relative constraint relaxed relaxed -
Minimum perturbed signal 0.01 1 -
Minimum switching time interval 0.5 0.5 ​
Measurements y1 y2
Number of Sampling points 10 ​ 10
Minimum sampling time interval 0.5 ​ 0.5
Sampling point strategy Synchronised

Table 4 
Preliminary calibration results.

Param-eter MI(θ,U,Y) MII(θ,U,Y) MIII(θ,U,Y) MIV(θ,U,Y)

Estimate t-value Estimate t-value Estimate t-value Estimate t-value

θ1 0.25 14.91 0.26 7.49 0.06 2.81 0.15 41.03
θ2 0.26 10.10 0.02 5.11 0.58 2.95 0.37 6.91
θ3 0.88 11.31 0.94 5.92 0.02 0.69 0.45 25.67
θ4 0.09 5.90 0.10 3.25 - - - -
tref,95% 2.02 2.02 2.02 2.02
P-value 90.47% 9.53% 0.00% 0.02%
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space and experimental constraints outlined in Table 3, ensuring feasi
bility and addressing practical limitations through the optimisation 
kernel of MIDDoE. The resulting experiment designs, along with the 
expected response divergences based on manipulated CVPs, are illus
trated in Figs. 6 and 7 for the HR and BFF criteria, respectively.

All HR designs conform to the predefined design space and con
straints; no optimisation constraints are violated. In contrast, some of 
the CVP switching times in the BFF designs violate the Minimum CVP 
switching signal constraint (see the Supplementary Materials S6). This 
violation occurs when the same computational budget is defined for the 
optimiser of both designs. However, it could have been avoided by 
allocating a higher number of maximum iterations to the optimisation of 
the BFF design.

Building upon the experiment designs outlined above, these ap
proaches are compared in terms of their impact on decision-making and 
ultimate discriminative capability in systems characterised by absolute 
errors. Under such conditions, the BFF design approach can be 
misleading, as it tends to focus on regions with lower signal levels where 
noise dominates the measurements, thereby reducing their effectiveness 
on calibration of the resulting experimental data (further detailed in the 
Supplementary Material S6). The final discrimination decision is made 
following simulated experimental data generation and model recali
bration, using the same procedures described in Sections 4.1.1 and 
4.1.2. Specifically, new synthetic data are generated based on the 

optimised experiment design, appended to the original dataset, and used 
to recalibrate all models. Initial parameter values are updated using the 
preliminary estimations from Section 4.1.2. The final divergences be
tween models are illustrated in Figs. 6 and 7, and the resulting P-values 
for HR and BFF designs are 99.9% and 99.2%, respectively.

In both scenarios, MI achieves a high P-value of more than 99%, 
clearly confirming its status as the most representative model of the 
underlying process. This round also yields updated parameter estimates, 
95% CIs, and corresponding t-values, summarised in Table 5. This table 
also reveals notable shifts in parameter estimates for model MII. All 
parameter estimates of model MI exhibit t-values greater than the 
reference threshold of 2.00, confirming their precision. Furthermore, the 
estimated values and their 95% CIs include the true parameters used for 
simulation, indicating high accuracy in both model calibration and 
discrimination.

4.2. Case study 2: Model calibration

This case study applies the MIDDoE framework to calibrate a 
mechanistic model describing a batch pharmaceutical synthesis process 
(Moshiritabrizi et al., 2024). The model captures the dynamic behaviour 
of reactions involved in the production of a quaternary chloride salt 
intermediate (QS1Cl), relevant to HIV drug manufacturing. The syn
thesis involves a reversible main reaction between the starting material 
(SM) and trimethylamine (TMA), and a parallel side reaction that irre
versibly converts QS1Cl into an impurity (ClDMI) and a volatile 
by-product (MeCl): 

SM + TMA ←
kf

→
kr

QS1Cl, QS1Cl →
kfs

CIDMI + MeCl (19) 

In scenario 1, a concluded experimental campaign is assumed, where 
EA assists selection of estimable parameters, and thereby achieving an 
identified form of model with maximum possible precision of parame
ters and preserved predictive capability.

In scenario 2, a limited experimental budget is assumed without 
providing prior information, where GSA is used to tailor the model for 
first MBDoE run, by detecting and fixing unimportant parameters 
without prior information. After obtaining a first set of in silico data, EA 
is used to reassess the state of parameters for their capability of being 
identified, and fixing non-estimable parameters. At the end of each loop, 
parameters are estimated, and uncertainty evaluated. These workflows 
are illustrated in Fig. 8 and explained stepwise.

4.2.1. Step 1: Definition of the system and candidate model
This dynamic behaviour is characterised by the concentrations of the 

starting material (CSM(t) as y1), the main product (CQS1Cl(t) as y2), and 
the impurity (CCIDMI(t) as y3), all in mol⋅L-1. These outputs are influenced 
by the initial concentrations of SM (CSM(0) as w1), and TMA (CTMA(0) as 
w2), as time-invariant controls, and a time-varying temperature profile 
(T(t) as u1), serving as the manipulated variables in the model identi
fication task. Model M (Eq. 20) represents the mass and energy balance 
of the QS1Cl production process with a true parameter vector θ =
[50000, 75000, 0.4116, 111900, 9905, 30000]. Fixed constants in the 
system are R=8.314 J⋅mol-1⋅K-1 as universal gas constant, and 
Tref=296.15 K as reference temperature. The reactions are studied for 16 
h of process time. The design space and its associated constraints are 
summarised in Table 6, while the feasible parameter space and the 
initial guess are presented in Table 7.

Fig. 5. Overlay plot of data and predictions of candidate models (MI , MII) after 
preliminary calibration for measurements of (a) y1, (b) y2 in experiments 1 
and 2.
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Fig. 6. Designed experiments for MBDoE-MD using the HR criterion, showing expected divergence for (a) y1, (b) y2, and divergence after recalibration for (c) y1, (d) 
y2, along with (e) the designed CVPs.

M(θ,U, Y ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dCSM(t)
dt

= − kf ⋅CSM(t)⋅CTMA(t) + kr⋅CQS1Cl(t), CSM(0) = w1

dCTMA(t)
dt

= − kf ⋅CSM(t)⋅CTMA(t) + kr⋅CQS1Cl(t), CTMA(0) = w2

dCQS1Cl(t)
dt

= kf ⋅CSM(t)⋅CTMA(t) − kr⋅CQS1Cl(t) − kfs⋅CQS1Cl(t), CTMA(0) = 0

dCCIDMI(t)
dt

= kfs⋅CQS1Cl(t), CCIDMI(0) = 0

dCMeCl(t)
dt

= kfs⋅CQS1Cl(t), CMeCl(0) = 0

kf = θ1⋅exp
(
− θ2

R

(
1

T(t)
−

1
Tref

))

kfs = θ3⋅exp
(
− θ4

R

(
1

T(t)
−

1
Tref

))

kr =
kf

k

k = θ⋅exp
(

θ6

R

(
1

T(t)
−

1
Tref

))

(20) 
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4.2.2. Scenario 1: Available experimental data and no possibility for 
further experiments

Four batches of experimental data, each containing 17 uniformly 
distributed sampling points, are generated in silico using the 
krnl_expera module with 0.5% absolute normal noise (as described 
in Section 4.1.1). The experiments are configured as follows: 

• Experiment 1: u1(t) = 296.15 K, w1 = 0.366 mol⋅L-1, w2 =

0.19 mol⋅L-1

• Experiment 2: u1(t) = 306.15 K, w1 = 0.366 mol⋅L-1, w2 =

0.19 mol⋅L-1

• Experiment 3: u1(t) = 296.15 K, w1 = 0.65 mol⋅L-1, w2 =

0.595 mol⋅L-1

Fig. 7. Designed experiments for MBDoE-MD using the BFF criterion, showing expected divergence for (a) y1, (b) y2, and divergence after recalibration for (c) y1, (d) 
y2, along with (e) the designed CVPs.

Table 5 
Parameters and their precision after recalibration.

Parameter HR design BFF design

MI(θ,U,Y) MII(θ,U,Y) MI(θ,U,Y) MII(θ,U,Y)

Estimate CI 95% t-value Estimate CI 95% t-value Estimate CI 95% t-value Estimate CI 95% t-value

θ1 0.25
±0.01

23.08 0.22
±0.03

7.86 0.25
±0.02

15.82 0.26
±0.07

14.92

θ2 0.25
±0.02

13.14 0.01
±0.01

1.72 0.25
±0.03

10.46 0.02
±0.02

3.14

θ3 0.88
±0.06

17.88 0.78
±0.01

6.50 0.88
±0.10

12.04 0.95
±0.33

3.86

θ4 0.09
±0.01

8.56 0.098
±0.03

2.80 0.09
±0.02

6.22 0.10
±0.06

2.16
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• Experiment 4: u1(t) = 306.15 K, w1 = 0.65 mol⋅L-1, w2 =

0.595 mol⋅L-1

These configurations constitute the full list of input settings used for 
the four experiments.

4.2.2.1. Step 2: Estimable parameter subset selection. Batch data are 
sequentially generated and appended to the observation matrix. At each 

round, EA is performed, followed by parameter subset selection and 
model calibration using the selected estimable parameters. The EA 
procedure is called by the sc_estima module and employs the LMBFGS 
optimiser with a multi-start strategy. The sensitivity matrix is con
structed using the central finite difference method.

Throughout the four EA calls, parameter θ3 consistently ranks as the 
most estimable, while the rankings of the remaining parameters varies 
across batches. When all experimental data are combined, the final 
ranking of parameters in descending order of estimability is: θ3, θ4, θ5,

θ6, θ1,θ2. The parameter subset selection of EA indicates that only the 
first 3 parameters in the list are estimable.

Fig. 8. Model identification workflow implemented by MIDDoE for Case Study 2. Arrows and step numbers in red indicate Scenario 1, blue indicate Scenario 2, and 
black represent shared steps. Following step (1), which defines the system and candidate models, in Scenario 1, the workflow generates in silico data and proceeds 
with (2) estimable parameter subset selection, and (3) model calibration. Generation of data and Steps (2)–(3) are repeated until the full observation matrix is 
evaluated, followed by model validation in step (4). In Scenario 2, the process begins with (2) GSA for preliminary estimable parameter selection, followed by (3) 
MBDoE-PP design and in silico data generation, (4) subset selection, and (5) model calibration. Steps (3)–(5) are repeated until the experimental budget ends, 
concluding with model validation in step (6).

Table 6 
Design space and constraints.

Controls u1 w1 w2

Min 296.15 0.05 0.1
Max 306.15 1.0 1.0
CVP LPF - -
Steps 6 - -
Relative constraint increasing - -
Minimum perturbed signal 0.01 - -
Minimum switching time interval 0.3 - ​
Measurements y1, y2,y3
Number of Sampling points 17
Minimum sampling time interval 0.3
Fixed sampling points 0, 16
Sampling point strategy synchronised

Table 7 
Feasible parameter space.

Parameter θ0 Lower bound Upper bound

θ1 100000 10000 1000000
θ2 100000 0 200000
θ3 1 0.1 10
θ4 100000 50000 200000
θ5 100 10 10000
θ6 10000 10000 200000

Z. Tabrizi et al.                                                                                                                                                                                                                                  Digital Chemical Engineering 17 (2025) 100276 

14 



4.2.2.2. Step 3: Model calibration. After each EA run, selected parame
ters are estimated using the iden_parmest module with identical 
optimiser settings. The uncertainty of these estimations is assessed via 
the iden_uncert module, employing a bootstrap method1. Table 8
lists the estimated parameters alongside their t-values. Based on the 
comparison with the reference t-value at 95% confidence level, all the 
EA suggested parameters are statistically assessed to be precise after 
being estimated with the full dataset. Estimated values show progressive 
precision and accuracy with the sequential addition of information to 
the workflow. The final model is identified with a high predictive 
capability (R2 of 0.99).

4.2.2.3. Step 4: Model validation. Cross-validation of the final state of 
identified model is performed using the iden_valida module. It yields 
a high validation R2 of 0.9985 ± 0.0015, which together with the high 

precision of parameter estimates and strong predictive performance, 
confirms the model predictive ability.

4.2.3. Scenario 2: Sequential design of new experiments

4.2.3.1. Step 2: Preliminary ranking of parameters. A preliminary eval
uation of the contribution of each parameter to the measured responses 
is performed using the sc_sensa module. This analysis is performed to 
assess the influence of parameters before designing any experiments in 
order to tune the model and to avoid the numerical instabilities of 
MBDoE. Sampling is conducted across the entire feasible parameter 
space, while fixing the input profiles to those of experiments 1 and 2 in 
Scenario 1. Fig. 9 illustrates the variation of the total Sobol index over 
time for each measured state variable under the respective input 
conditions.

The results indicate a descending order of average parameter influ
ence, with θ3, θ5, θ4, and θ6 contributing most significantly. Based on 
this ranking, θ1 and θ2 are considered non-influential under the tested 
operational conditions and fixed to their initial guess before running the 

Table 8 
Model calibration results for Scenario 1.

Round 1 Round 2 Round 3 Round 4

Parameter Estimate t-value Estimate t-value Estimate t-value Estimate t-value

θ1 – – – – – – – –
θ2 – – – – – – – –
θ3 0.4115 52.34 0.4120 55.97 0.4141 174.70 0.4155 205.25
θ4 – – 116038 14.69 116670 10.76 112017 66.30
θ5 4210 1.73 3853 1.82 6141 2.99 7051 4.08
θ6 – – – – – – – –
tref,95% ​ 2.01 ​ 1.98 ​ 1.97 ​ 1.97

Fig. 9. Variation of the total Sobol index Syj
Ti of parameters θi over process time for the measured responses: (a) y1, (b) y2, and (c) y3 in experiment 1, and (d) y1, (e) 

y2, and (f) y3 in experiment 2.

1 This method is selected due to the presence of sloppy parameters and ill- 
conditioning of the Fisher information matrix.
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first MBDoE-PP.

4.2.3.2. Steps 3 and 4: Design of experiments and in silico data gen
eration. The first model-based experiment focused on parameter preci
sion is designed using the des_pp module. D-optimality is employed to 
maximise the initial information content, aiming to reduce the uncer
tainty of the four remaining parameters. The global-local joint optimiser 
(DEPS) in MIDDoE is used for this step. The same algorithmic settings are 
applied in the subsequent rounds, but with an E-optimality criterion to 
target the identification of the less influential parameters. The opti
mality criterion of MBDoE-PP is switched from D-optimality to E-opti
mality to shift the focus from enhancing the precision of the most 
influential parameter to improving that of the least precisely estimated 
one. This switch reallocates the optimisation budget toward designing 
experiments that minimise the largest eigenvalue of the var
iance–covariance matrix, thereby improving the precision of parameters 
with lower t-values. A similar scenario, where D-optimality is main
tained throughout the workflow for comparison purposes, is presented 
in Supplementary Material S7. All designed experiments compile with 
the physical constraints of the process. These experiments are conducted 
entirely in silico, under the same error regime described in Scenario 1 
(Section 4.2.2).

4.2.3.3. Step 5: Estimable parameter subset selection. This step is carried 
out immediately after each round of experiment design using the same 
specifications as in Scenario 1 (Section 4.2.2.2). Consistently, θ3 is 
identified as the most estimable parameter throughout the sequence. 
However, by the end of the campaign, four parameters are suggested as 
estimable by EA. The final ranking of parameters is θ3, θ5, θ4, θ6, θ1, θ2 
and the richer information acquired through MBDoE-PP has enabled the 
detection of θ6 as an estimable parameter in this scenario.

The estimable subset of parameters is assessed using the same set
tings described in Scenario 1 (Section 4.2.2.2). Table 9 presents the 
sequential parameter calibration following each newly designed exper
iment, and the selection of estimable parameters. Comparing the results 
of this scenario with those obtained from non-MBDoE-designed experi
ments highlights a more substantial improvement in precision after the 
first design, attributable to D-optimality. Additionally, the number of 
statistically significant parameters increases from three to four. 
Switching to E-optimality in the second round improves the precision of 
the least estimable parameters, while slightly reducing it for the most 
precise ones. The final model exhibits a high predictive capability, with 
a R2 of 0.99.

4.2.3.4. Step 6: Model validation. Leveraging the same approach as in 
Scenario 1 (Section 4.2.2.3), the model is validated and yields a high 
validation R2 of 0.9996, confirming the identified model predictive 
ability.

5. Conclusions

This work presented MIDDoE, a modular and end-to-end Python 
package for comprehensive employment of MBDoE within model 

identification workflows. It is based on three conceptual layers – client, 
logic, and kernel – letting it operate independently of specific model 
structure syntaxes. Its architecture treats the model and simulator as 
part of a core kernel, with standardised data interfaces to ensure 
seamless integration. This design supports both built-in and externally 
defined simulation routines, offering flexibility and interoperability 
across different modelling environments.

As a simulation-driven framework for systems governed by ODEs, 
MIDDoE’s logic layer implements techniques for designing experiments 
and conducting (1) model discrimination and (2) model calibration. 
These techniques are further supported by GSA and EA to assess the 
parameter space to fix practically insignificant parameters. This im
proves the robustness of MBDoE in ill-conditioned systems, and guides 
selection of estimable parameters. Besides, it facilitates practical appli
cations by supporting the enforcement of physical constraints and user- 
defined optimisation configurations. The MBDoE engine is built to 
handle non-convex design spaces and practical experimental limitations. 
It is further supported by integrated numerical techniques for input 
space exploration, parameter estimable subset selection and estimation, 
uncertainty quantification, and model validation.

Finally, MIDDoE is built with usability as a core principle. For ex
perimentalists and users without programming experience, the client 
layer provides a clear and intuitive interface. Meanwhile, advanced 
users can customise workflows using modular tools within the logic 
layer. This dual approach, combined with the use of simple Python/ 
Numpy arrays, ensures that MIDDoE can serve users seeking a plug-and- 
play tool without requiring familiarisation with a specific software 
ecosystem.

Although MIDDoE currently supports the most common sequential 
MBDoE techniques, several challenges remain that warrant further in
vestigations both in terms of experimental strategies and model 
compatibility. These include detecting feasible design spaces and con
straining MBDoE within them, enabling online or inline redesigning of 
experiments, and extending support to more complex PDAE structures.

List of acronyms and symbols (all acronyms and symbols refer to 
general sections only and not to the case studies)

Acronyms

BFF Buzzi-Ferraris and Forzatti (a MBDoE-MD method)
BFGS Broyden–Fletcher–Goldfarb–Shanno (an optimisation method)
CI Confidence Interval
CPF Constant Piecewise Profile (a CVP method)
CS Chi-square (a fitting cost function)
CVP Control Vector Parameterisation
DAE Differential Algebraic Equation
DE Differential Evolution (an optimisation method)
DEPS Differential Evolution and Pattern Search (an optimisation method)
DoF Degree of Freedom
DoE Design of Experiments
EA Estimability Analysis
GP Gaussian Process
GSA Global Sensitivity Analysis
HR Hunter and Reiner (a MBDoE-MD method)
LMBFGS Limited-memory BFGS (an optimisation method)

(continued on next page)

Table 9 
Model calibration results for Scenario 2.

Round 1 Round 2 Round 3 Round 4

Parameter Estimate t-value Estimate t-value Estimate t-value Estimate t-value

θ1 – – – – – – – –
θ2 – – – – – – – –
θ3 0.4170 125.12 0.4160 34.65 0.4162 53.50 0.4163 52.95
θ4 – – 110692 11.80 109686 17.08 109686 14.32
θ5 4004 2.49 4225 3.19 4337 2.56 4908 3.05
θ6 – – – – – – 107093 2.42
tref,95% ​ 2.01 ​ 1.98 ​ 1.97 ​ 1.97
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(continued )

LMS Left Matrix Scrambling
LOOCV leave-one-out cross-validation
LPF Linear Piecewise Profile (a CVP method)
LS Least Squares (a fitting cost function)
MBDoE Model-Based Design of Experiments
MBDoE-MD Model-Based Design of Experiments for Model Discrimination
MBDoE-PP Model-Based Design of Experiments for Parameter Precision
MIMO multiple-input, multiple-output (a model structure)
MLE Maximum Likelihood Estimation (a fitting cost function)
NMS Nelder-Mead simplex (an optimisation method)
PDAE Partial Differential Algebraic Equation
PS Pattern Search (an optimisation method)
SINDy Sparse Identification of Nonlinear Dynamics
SLSQP Sequential Least Squares Programming (an optimisation method)
TC Trust-region constrained (an optimisation method)
WLS Weighted Least Squares (a fitting cost function)

Latin symbols

CIi Confidence Interval of estimated parameter θ̂i

Fl,ĺ ,t Uncertainty weight factor of T-optimal design criteria at each sampling time t 
for models l, and ĺ

f Differential equation in the MIMO system
g Algebraic equation in the MIMO system
I Fisher information matrix [Nθ × Nθ]
M Model as a MIMO system
Pi Probability of the i-th model being the best among Nm candidates
Qr Local sensitivity matrix for each measured response r at all sampling times tNsp 

[NtNsp × Nθ]
Ql,t Local sensitivity matrix of model l at each sampling time t for measured 

responses [Nr × Nθ]
R2 Coefficient of determination
S1 Matrix of Sobol’ first-order for model state variables [Nr × Nt]
ST Matrix of Sobol’ total-order for model state variables [Nr × Nt]
t Time vector encompassing all control and measurement time points [Nt × 1]
ti t-value of estimated parameter θ̂i

tref Reference threshold, corresponding to a Student t-value
Tl,ĺ T-optimal design criteria for MBDoE-MD between models l and ĺ
U Matrix of time-dependent control inputs [Nu × Nt]
u Vector of time-dependent control inputs at each time step [Nu × 1]
Vθ Variance-covariance matrix of model parameters [Nθ × Nθ]
vθ,ii The i-th diagonal element of Vθ

Wl,t Modeling errors contribution in MBDoE-MD of model l at each sampling time t
w Time-invariant control inputs [Nw]
X Matrix of time-variant state variables, governed by differential equation [Nx 

× Nt]
x Vector of time-variant state variables at each time step, governed by 

differential equation [Nx × 1]
ẋ Vector of time-variant derivatives of state variables at each time step, 

governed by differential equation [Nx × 1]
Y Matrix of measured state variables [Nr × Nt]
y Vector of measured state variables at each time step [Nr × 1]
ŷ Vector of model predictions at each time step [Nr × 1]
ŷ(r,t) Model prediction of response r at time step t
Z Matrix of time-variant state variables, governed by algebraic equation [Nz ×

Nt]
z Vector of time-variant state variables at each time step, governed by algebraic 

equation [Nz × 1]

Greek symbols

α Significance level
χ2 Chi-Square value
ε Vector of errors [Nr × 1]
ψ Scalar metrics of MBDoE-PP problems (so called alphabetical optimal 

criterial)
σ̃(r,ŕ ) Elements from the inverse of the measurement errors variance-covariance 

matrix
θ Vector of true values of model parameters [Nθ]
θ̂ Vector of estimated values of model parameters [Nθ]

θ̂i The i-th estimated parameter
Σθ Prior variance-covariance matrix of model parameters [Nθ × Nθ]

(continued on next column)

(continued )

Σy Measurement errors variance-covariance matrix [Nr × Nr]
φ Design vector of MBDoE [Nφ]
φOPT Optimal design vector [Nφ]
Φ The feasible design space
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