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Mathematical modelling plays a critical role in the design, optimisation, and control of dynamic systems in the
process industry. While mechanistic models offer strong explanatory and predictive power, their effectiveness
depends on informed model selection and precise parameter calibration. Model-based design of experiments
(MBDoE) provides a framework for addressing these challenges by designing experiments that accelerate model
discrimination and parameter precision tasks. However, its practical application is frequently constrained by
fragmented digital tools that lack integration and make MBDoE implementation a task for expert users. To
address that — thus supporting the widespread use of MBDoE — MIDDoE, a modular and user-friendly Python-
based framework centred on MBDoE is introduced. MIDDoE supports both model discrimination and parameter
precision design strategies, incorporating physical constraints and non-convex design spaces. To provide a
comprehensive MBDoE digital tool, the framework integrates numerical techniques such as Global Sensitivity
Analysis, Estimability Analysis, parameter estimation, uncertainty analysis, and model validation. Its architec-
ture decouples simulation from analysis, enabling compatibility with both built-in and external simulators, which
allows MIDDoE to be applied across different systems. MIDDoE practical application is demonstrated through two
case studies in bioprocess and pharmaceutical systems for model discrimination and parameter precision tasks.

1. Introduction improve the precision of parameter estimates (MBDoE-PP) (Espie and

Macchietto, 1989). This approach proved effective in reducing experi-

Mechanistic models are cornerstones in the development, optimisa-
tion, and control of engineered systems, offering predictive capabilities
that extend beyond experimental observations (Buede, 2024; Pistiko-
poulos et al., 2021). Based on first principles, their reliability depends on
a representative model structure and precisely estimated parameters.
However, achieving predictive reliability is challenging: sparse data,
parameter correlations, and structural ambiguities often compromise
early-stage modelling. These limitations highlight the need for targeted
data acquisition and rigorous model identification strategies to reduce
uncertainty and improve predictive performance, a challenge that calls
for Model-Based Design of Experiments (MBDOE).

MBDOoE is tailored for mechanistic models, explicitly accounting for
physical laws and meaningful parameters (Franceschini and Macchietto,
2008). It frames experiment planning as an optimisation problem,
aiming to maximise the information content of data — either to increase
the predictive divergence between candidate models and accelerate
model discrimination (MBDoE-MD) (Hunter and Reiner, 1965), or to
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mental burden, material usage, and measurement costs, while max-
imising mechanistic insight and valuable in applications involving
complex, nonlinear dynamic systems, where experimentation is
resource-intensive (Geremia et al., 2026).

Despite these demonstrated benefits, MBDoE remains a niche
methodology in practice. Its application is limited by the need for
computational literacy and familiarity with optimisation strategies.
Additionally, the lack of accessible and physics-aware digital tools limits
broader implementation among experimentalists and industrial practi-
tioners (Geremia et al., 2026). Moreover, the practical effectiveness of
MBDoE depends on its application following a rigorous
pre-experimental analysis — particularly in terms of parameter signifi-
cance and estimability — which requires holistic workflows for param-
eter ranking and identifiability assessment prior to experiment design.

Transforming MBDoE from a niche approach into a widely practical
methodology requires more than simply addressing an optimization
problem: it demands integrated workflows that begin with Global
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Sensitivity Analysis (GSA) to identify influential inputs (Saltelli et al.,
2006) and Estimability Analysis (EA) to determine which parameters
can be reliably estimated to assist MBDoE in correctly assigning the
explorative budget (Cobelli and DiStefano, 1980). These steps are crit-
ical in nonlinear dynamic systems, where parameter identifiability may
vary across the design space, and uninformed experiments risk targeting
insensitive or weakly identifiable parameters. For an effective MBDoE
use, the method must be embedded within a holistic modelling work-
flow that integrates initial diagnostic steps with complementary tasks
such as parameter estimation, uncertainty analysis, and validation.
Digital tools that are physics-aware, constraint-capable, and flexible
enough to adjust to real-world process specifications are also necessary
for the practical implementation of such a comprehensive MBDoE usage,
particularly in industrial environments (Geremia et al., 2026).

While the conceptual foundation of MBDoE is well established,
available software remain limited. In the area of MBDoE-MD, digital
implementations are rare. A notable exception is GPdoemd (Olofsson
et al.,, 2019), an open-source Python package that employs Gaussian
Process (GP) surrogates to represent mechanistic models as black boxes,
enabling gradient-free optimisation (Harris et al., 2020; Olofsson et al.,
2019). It supports a variety of divergence-based design criteria — from
Hunter-Reiner to Jensen-Rényi divergence — and includes modules for
parameter estimation, model selection, and post-processing (Rényi and
Renyi, 1965; Vanlier et al., 2014). However, some issues are not solved
yet, including the absence of sampling time optimisation, limited sup-
port for Control Vector Parameterisation (CVP), insufficient enforce-
ment of physical constraints, and elevated uncertainty in GP predictions
for highly nonlinear systems.

In contrast, DoE-SINDy (Lyu and Galvanin, 2025) consists in a
recently introduced Python-based framework that targets automated
kinetic model discovery when first-principles formulations are unavai-
lable or uncertain as a complementary problem. It uses the Sparse
Identification of Nonlinear Dynamics (SINDy) approach to construct
interpretable differential equations directly from time-series data
(Brunton et al., 2016). The current version iteratively improves model
quality by augmenting the training dataset with new experiments and
validating structural and statistical adequacy at each step. It does not yet
include MBDoE capabilities, but these are expected to be added in future
work.

In contrast, several tools have been developed to support MBDOE-PP.
At present, the commercial platform gPROMS by Siemens (https://www.
siemens.com/global/en/products/automation/industry-software/gpro
ms-digital-process-design-and-operations.html)  offers the most
comprehensive implementation, supporting various optimality criteria,
constant and linear piecewise CVPs, and advanced solvers for nonlinear
and non-convex problems. However, as a proprietary software, it may
restrict user customisation (which can be a drawback when adapting to
experimental constraints), lacks support for MBDoE-MD, and does not
offer features for defining uncontrollable and forced control regions, and
signal perturbation constraints.

EFCOSS, Pydex, and PYOMO.DOE are the three prominent open-
source Python tools that support MBDoE-PP. EFCOSS (Rasch and
Biicker, 2010) is a modular framework based on the Cobra platform,
enabling distributed coupling between simulators and optimisers.
Despite its flexibility, it requires considerable programming skills from
the user, lacks support for alternative MBDoE-PP criteria, and delegates
data handling and post-processing to the user. Pydex (Kusumo et al.,
2022) employs a continuous-effort approach that improves robustness
and mitigates non-convexity, but may compromise optimality where
sequential updating is feasible, or may demand increased computational
resources for larger design spaces. PYOMO.DOE (Wang and Dowling,
2022) integrates experiment design within the PYOMO algebraic
modelling framework and supports differential-algebraic systems
(DAEs) through PYOMO.DAE, along with parameter estimation via
PYOMO.Parmest (Klise et al., 2019; Nicholson et al., 2018). PYOMO has
been extended to support external solvers and to interface with external
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models, including input-output (GreyBox) models via PyNumero (Laky
etal., 2022; Rodriguez et al., 2020). However, setting up such interfaces
may still be challenging for inexperienced users.

Although each tool offers distinct capabilities, the most complete
ecosystems are currently found in gPROMS and PYOMO.DOE, since they
partially integrate several elements of a model identification workflow.
Both provide parameter estimation, uncertainty analysis, and post-
processing capabilities, but neither includes built-in EA or support for
MBDoE-MD. gPROMS includes built-in GSA and proprietary solvers,
whereas PYOMO.DOE requires external solvers for optimisation and
simulation tasks, as well as third-party libraries — such as SALib
(Iwanaga et al., 2022) - to perform GSA. Both frameworks are tightly
coupled to their native environments which can add complexity in
enforcing advanced constraints within the design space. This is a chal-
lenge for users with limited programming experience and increases the
computational overhead required for model integration and tool
interoperability.

To overcome the shortcomings of current tools in offering a
comprehensive platform for MBDoE, an open-source Python package
called MIDDoE (Model-(based) Identification, Discrimination, and
Design of Experiments) is presented here. MIDDoE, recently introduced
in a preliminary form for parameter estimation (Tabrizi et al., 2025),
integrates the core components of a model identification workflow
required to support MBDOE in dynamic systems. It includes GSA and EA
for early-stage evaluation of the model structure and design space, and
also includes modules for parameter estimation, uncertainty analysis,
validation, and post-analysis. These features collectively support the
core functionalities of MBDoE for model discrimination and parameter
precision within a single, cohesive, open-source, and common Python
environment. MIDDoE adopts a modular architecture for identification
process organised into kernel, logic, and client conceptual layers, as
illustrated in Fig. 1.

In contrast to existing tools, MIDDoE aims at taking a step forward by
not only integrating the full range of functionalities needed to support
MBDoE at varying levels of user expertise, but also embedding a dedi-
cated optimisation core. This core enables the incorporation of physical
and operational constraints as well as flexible solver configurations for
tackling non-convex optimisation problems. Additionally, the package
facilitates seamless integration with external simulators — such as
gPROMS - increasing its applicability across diverse scientific and en-
gineering domains.

This article is structured as follows. Section 2, methods and mathe-
matical framework, describes the theoretical basis of model identifica-
tion as well as the numerical techniques implemented in MIDDoE to
support it. Section 3, package architecture, outlines the modular struc-
ture of the software, along with the execution capabilities and technical
specifications of the implemented methods. Section 4 presents two case
studies are used to demonstrate the practical use of MIDDoE to address
model identification problems in practical case studies. Finally, the
conclusions summarise the core features, main findings, and future di-
rections of this work in Section 5.

2. Methods and mathematical framework

MIDDoE integrates various numerical techniques. This section out-
lines the mathematical foundation upon which these techniques are
implemented. Only the techniques implemented within MIDDoE are
discussed.

2.1. Definition of dynamic models
The formulation is grounded in the theory of dynamic systems and

adopts a general nonlinear parametric model structure, consistent with a
multiple-input, multiple-output (MIMO) system, denoted as M(6):
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3. Client Layer

User interface: specification,
execution, and post-analysis

Numerical methods: GSA, EA,
MBDOoE, parameter estimation,
uncertainty analysis, and validation

Model interface: built-in models
and their simulation, external
simulator integration

Fig. 1. Conceptual layers of MIDDoE: (1) the kernel layer handles model simulation (built-in or externally interfaced) and internal data flow; (2) the logic layer
implements MBDOE alongside essential identification steps including GSA, EA, parameter estimation, uncertainty analysis, and validation; (3) the client layer enables
user-level configuration, execution, and post-analysis.

fx(t),x(t),u(t),z(t),w,0) =0 o 0 ¢ RV: Vector of model parameters to be estimated, indexed by the
) . set {1,...,Np}.
M(0,x(t), u(t),z(t),w ) : ¢ g(x(t),u(t), z(t),w.0) = 0 €)) « X(t) € R%* 1: Time-variant state variables governed by the differ-
y(t) = h(x(t), u(t),2(t), w, ) ential equation f, represented over time as a matrix X € RN-*N:,

This formulation is characterised by the following components:

o Ty v

Design decisions ¢

|

A
Nominal controls U, and w ) ”

A
»

S, (x/z, t) for each model

Nominal parameters 0

S1(x/z, t) for each model

Control space U;, U,,, w;, w,, A
f_> ranked parameter list
Parameter space 0, 0,, 7 VECtor
A
optimal parameter subset &*
Model(s) M(0, U, w)
f—) WLS, LS, R%, MLE, Chi metrics
A -
»
Samples \_) Estimated parameters @ [
;m_) Validation metrics
Time vector ¢ —
Sensitivity matrix Q
Experimental data y(U, w, 7) UNCERTAINTY
ANALYSIS P! Variance-Covariance matrix V(@)
Physical constraints —»| CI, -value 95%

Fig. 2. Input/output structure of the core techniques implemented in the MIDDoE logic layer, including: (1) GSA; (2) parameter estimation and uncertainty analysis;
(3) EA; (4) MBDOE; and (5) model validation.
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z(t) € R¥* !: Time-variant state variables governed by the algebraic
equation g, represented over time as a matrix Z € RN-*Ne,

u(t) € R¥>* 1: Time-dependent control inputs (manipulated vari-
ables), represented over time as a matrix U € RN*Ne,

e w € R™: Time-invariant control inputs.

y(t) € RN 1: Measured state variables, indexed by the set {1,...,N;},
and related to the model predictions by: y(t) = y(t) + (t) where y (t)
is the corresponding predicted value and €(t) represents the mea-
surement noise or modelling error. It is represented over time as a
matrix Y € RN,

e t € RV 1: Time vector encompassing all control and measurement
time points.

With M(0) representing the generic structure of candidate models,
the implemented techniques — forming the backbone of the previously
introduced logic layer (Fig. 1) for identification of such systems - are
outlined in Fig. 2. This flowchart illustrates the theoretical inputs and
outputs of the methods supported by MIDDoE, which are subsequently
detailed in the following sections.

2.2. Global sensitivity analysis

GSA methods are developed to evaluate the influence of model in-
puts — parameters 6, time-variant controls u(t), time-invariant controls
w — on the state variable trajectories x(t) and z(t) across the entire
feasible input space. These approaches account for nonlinear de-
pendencies and higher-order interactions, thereby offering more
comprehensive and informative insights into system behaviour (Saltelli
et al., 2010). Among GSA methods, Sobol’s method (Sobol’ IM, 1990) is
one of the most robust and widely used variance-based GSA techniques.
It enables the estimation of first-order (S;) and total-order (St) Sobol
indices for each model output across time and model instances, making
it particularly suitable for complex, nonlinear, and dynamic systems.

This technique employs a Saltelli-type quasi-Monte Carlo strategy
for global sensitivity quantification (Saltelli et al., 2010). The sampling
approach is based on Sobol’ sequences, which are deterministic
low-discrepancy sequences in [0,1]¢ (where d is the number of input
variables) that uniformly cover the unit hypercube. The sequences are
scrambled using a mix of Left Matrix Scrambling (LMS) and a digital
random shift, which is referred to as LMS+shift (Owen, 1998), in order
to improve uniformity and mitigate structural correlations. This trans-
forms the deterministic Sobol’s sequence into a randomized qua-
si-Monte Carlo sample, preserving low-discrepancy characteristics
while allowing for unbiased estimation and robust variance reduction.
Further details on this transformation, as well as the evaluation of Sobol’
first-order and total-effect indices (S;, and St) are provided in the
Supplementary Material S1.

As illustrated in Fig. 2, this technique requires the nominal values of
fixed inputs, the sampling space of studied inputs, the time vector, the
model(s), and the number of samples in order to compute the sensitivity
indices for each response across time and model instances.

2.3. Parameter estimation and statistical metrics

Identification of model parameters @ that best reproduce experi-
mental observations, along with the evaluation of uncertainty in this
stage, plays a pivotal role in guiding the model identification workflow.
It forms the basis of MBDOE optimisation, and the metric to accept the
adequacy and precision of identified model. Common cost functions
employed in parameter estimation include Least Squares (LS), Weighted
Least Squares (WLS), Maximum Likelihood Estimation (MLE), and Chi-
Square (CS). These formulations are discussed in detail in the Supple-
mentary Material S2.

After calibration of the candidate models, P-test is applicable, which
quantifies the relative likelihood that each candidate model provides the
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best fit to the observed data. This method assigns a probability score P;
to each model i, reflecting its relative quality based on goodness-of-fit
metrics.

The calculation is based on the Chi-Square values (y2) obtained after
parameter estimation for each model. Models with lower y? values are
considered better descriptors of the system. The probability of the i-th
model being the best among N, candidates is defined following the
formulation by (Galvanin et al., 2016):

i
RV
This normalised probability score allows direct comparison of model

quality. A higher P; indicates stronger evidence in favour of model i and
supports effective model discrimination based on fit performance.

Pi=1- 100 (2)

2.4. Uncertainty analysis and statistical metrics

Once the parameter estimates (5) are obtained, the uncertainty in
these estimates is quantified using either frequentist or asymptotic
methods. The choice of method depends on the assumed model linearity
and the degree of parameter identifiability. Regardless of the approach,
the first step involves constructing a local sensitivity matrix Q, for each
measured response r, defined as:

9y 0y
00; 1y, a@Nﬁ t
Q=] : = ®3)
0yr 9y-
001l 0Oy,

where ¥, denotes model predictions, N, is the number of sampling
points, and Ny is the number of active parameters. This matrix lets
construction of the Fisher information matrix 1(9, U, w) as:

N, Ny A

10,Uw) =" > 51QIQ +Zo(0) '~ > > 51 QQs @
r r r r

where prior information of parameters can be neglected (i.e,
29(5)’1 ~ 0), and 6, are elements from the inverse of the variance-
covariance matrix of measurements errors. The measurement noise
structure across all responses is characterised by matrix Z:

2 2
0-)’1 R4l 6)’1 INr
= i - : (5)
2 2
(Ter Y1 0}’1\1, YNr

I serves two key purposes:

(i) Diagnosing the presence of sloppy parameters and ill-
conditioning in the estimation problem, and selecting the un-
certainty analysis method.

(ii) Enabling the approximation of the parameter var-
iance—covariance matrix by inverting it (Vy = I"!) if an asymp-
totic method is selected.

In particular, sloppy parameters correspond to directions in param-
eter space where the model output is only weakly sensitive, resulting in
very small eigenvalues of L. If the condition number of the Fisher matrix,
defined as x(I) = Amax/Amin, €xceeds a critical threshold (typically
k > 10%), the model is considered sloppy and if this number is extremely
high, the matrix is ill-conditioned and the inversion of it creates sig-
nificant errors in evaluation of the variance and covariance terms
(Gutenkunst et al., 2007). This indicates possible non-identifiability of
parameters with lower eigenvalues and reduced reliability of asymptotic
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uncertainty estimates.

In cases of strong nonlinearity or poor identifiability, a frequentist
approach such as bootstrapping is preferred for more robust uncertainty
quantification (Efron, 1979). In such a technique, bootstrap resampling
generates multiple synthetic datasets by drawing with replacement from
the original data. Parameter estimation is repeated on each resampled
set, and the resulting distribution of estimates reflects the underlying
variability without requiring assumptions about linearity or normality.

The resulting covariance matrix Vg(a,U,w) from any of the dis-
cussed methods is used to compute Confidence Interval (CL;) and t-value

of estimated parameter 9; at a confidence level of (1 — a) = 95%:

1 —
cl = \/_Vg,iyt(Ta, DoF) fori=1, .., Ny ®)
o .
t = ,i=1, -+, N, @
' v/ Voii ¢

where vy;; is the i-th diagonal element of Vj, and t(l%a, DOF) is the

upper @ critical value of a Student’s t-distribution with DoF = Ny, —Nj

degrees of freedom.
The t-test provides a quantitative measure of estimation precision by

statistically assessing whether each estimated parameter 9; is signifi-
cantly different from the parameter noise with a zero mean. This is
verified by checking whether the computed t;-value exceeds the refer-
ence threshold "¢, corresponding to a Student t-value at the same
confidence level (Galvanin, 2010).

When uncertainty is quantified using the Fisher information matrix,
the analysis is inherently local because it relies on local sensitivities. In
contrast, when uncertainty is assessed using bootstrapping, the pro-
cedure is global.

Fig. 2 summarises the required inputs for these techniques, including
data, model structures, the time vector, control input values, and the
feasible parameter space. These inputs are used to estimate parameters
and evaluate fitting quality metrics, followed by quantification of un-
certainty through the variance-covariance matrix, 95% CIs, and corre-
sponding t-values.

2.5. Estimability analysis

Model parameters can be assessed in terms of their capability to be
uniquely and precisely estimated by performing an identifiability anal-
ysis. It includes structural identifiability, which examines models under
ideal conditions (infinite data, no noise), and practical identifiability
(called estimability in some contexts), which considers real-world data
limitations (Cobelli and DiStefano, 1980; Jacquez and Greif, 1985; Miao
et al., 2011; Raue et al., 2009). Estimability analysis and parameter
subset selection are key techniques to support MBDOE to assess the in-
fluence of parameters, and fix the ones that cannot be estimated. Among
different EA methods, the orthogonalisation method has emerged as a
powerful, systematic, and computationally efficient local technique for
ranking and selecting estimable parameters (Wu et al., 2011; Yao et al.,
2003). This method removes dependencies among parameters to ensure
that each selected parameter contributes independently, and then, based
on the influence on predictability, proposes the optimal active param-
eter trade-off (top-k* ranked parameters) between biases caused by
fixing of parameters and uncertainty introduced by over fitting. These
methods are further explained in detail in the Supplementary Material
S3.

The input and output structure of these techniques is summarised in
Fig. 2, where the scaled sensitivity matrix is used for parameter ranking,
and the parameter estimation procedure — along with its required inputs
— is employed for parameter subset selection.
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2.6. Model-Based design of experiments

The MBDoE-MD and MBDoE-PP are central techniques to accelerate
the model discrimination and calibration by designing more informative
experiments. The core of each MBDoE task is an optimisation, which
solves for the decision vector ¢ = [u(t), w, tsp], representing time-
variant, -invariant controls, as well as the sampling times of measured
state variables.

MBDoE-MD implements the T-optimality criteria, which seeks to
maximise the divergence between competing model predictions. Two of
the most used formulations are the Hunter and Reiner (HR) (Hunter and
Reiner, 1965), and an extension on Buzzi-Ferraris and Forzatti method
(BFF) (Chen and Asprey, 2003). The general form of the T-optimal
design problem is expressed as:

Ny Npn Np

@opr = arg max Z Z Z Ty (.0, al,t) dt ®
p @

k=1 1=1 I'=1+1

Ty (9,0, ,t) = (3:(0,0,0) — Y1 (0,8 ,£)" < Fip ((Fu(@, 0,0) T (.0 1))
(C)]

where N;, denotes the number of competing models, 0 and 5, are the
respective preliminary estimated parameter vectors for models [, and
@ defines the feasible design space, and F;; , is a weight factor based on
the uncertainties in observation and parameter estimation at different
sampling times, t € R¥»* ! which is 1 for ‘HR’. For the BFF, Fir, in-
corporates model sensitivity and covariance terms, and is defined at
each sampling time t as:

Fire =2+ Wi + Wy, 10)

where X, is the variance-covariance matrix of measurement errors, and
Wy and Wy, are representing the modeling error contributions, derived
from the sensitivity of each model to its parameters. Each W, is con-
structed as:

wl.t = Ql.t 257,11 Qth an

where Q,, is the sensitivity matrix of model l with respect to its estimated
parameters 6; from the preliminary estimations, evaluated at time :
Yl 0) Yt 61)
661‘1 a(‘)l_Ny
Q.= : : (12)

WFu(t, 0)  uml(t, O)
0011 001,

This formulation also applies analogously to W; , for model [

Conversely, MBDOE-PP aims to minimise parameter uncertainty by
reducing the size of the confidence hyperellipsoid through optimisation
of a scalar metric y/[Vg(a,U,w)]. The MBDOoE-PP problem is formulated
as:

@opr = arg min y[Vy(0,U, w)] a3
[ ]

Several objective functions 1//[V9(§7U,w)}, commonly referred to as
alphabetical criteria are widely used in this context and listed in Table 1
(Franceschini and Macchietto, 2008).

These formulations are described in detail with their geometric
interpretation, advantages, and disadvantages in the Supplementary
Material S4.

Fig. 2 summarises the inputs and outputs of this method, which relies
on the estimated parameters and their associated variance-covariance
matrix, along with the model(s), time vector, design space, and relevant
physical constraints.
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Table 1
MBDOE-PP alphabetical criteria.
Criterion  Definition Mathematical Equation
form
D Reducing the confidence region size wp = det [Vy(0, a14)
by minimising the determinant of the U,w))
Vo (a,U,w).
A Lowering the average variance across W =t [Vp (@.U, (15)

all parameter estimates by minimising
the trace of V,q(a,U,w).

E Reducing the variance of the most
uncertain parameter by minimising

w)]

Y = Znax [Vo(8,  (16)
U,w)]

the biggest eigenvalue of Vy (a.U,w).
Ensure uniform precision across
parameters by minimises the

" VM = K[Vs(a,U, an
w)]

condition number of the V(,(@#U.w).

2.7. Model validation

To assess the reliability and generalisation capability of estimated
parameters, leave-one-out cross-validation (LOOCV) procedure (Stone,
1974) is a widely used method. In each fold of this method, a part of data
is withheld for validation, while the rest is used for model recalibration.
The process is repeated, and performance metrics (e.g., R?, mean square
error) are compared for both calibration and validation sets. Fig. 2
summarises the demanded inputs and expected outputs, as the tech-
nique iteratively uses the parameter estimation and returns both cali-
bration and validation predictive metrics.

/ Inputs \

Candidate Models

Physical Constraints
Numerical Preferences
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3. Package architecture
3.1. Overview of the package architecture

MIDDoE, available at https://pypi.org/project/middoe and compat-
ible with Python versions 3.9 and above, is designed to support the
discussed model identification tasks through two service levels. The first
targets end-users with limited programming experience, offering a
wrapper-based execution pathway that follows a logical, stepwise
sequence. The second provides a flexible interface for advanced users
who wish to customise the logic of each method for complex experi-
mental campaigns or methodological investigations. To ensure compu-
tational efficiency - particularly in inner optimisation loops and
numerical solvers — MIDDoE adopts a modular procedural programming
approach. This structure reduces runtime overhead by eliminating un-
necessary object instantiations and attribute lookups, while retaining
the structural benefits of object-oriented design, such as abstraction and
modularity (Calder et al., 1994).

The following sections elaborate on the conceptual architecture of
MIDDoE (Fig. 1) and describe the role of each executive module in the
layered structure.

3.2. Logic layer

Fig. 3 illustrates a structured model identification workflow, incor-
porating the executive modules and their interdependencies. This
application-oriented structure allows systematic execution of tasks such
as GSA, parameter estimation, uncertainty analysis, EA, MBDoE and
model validation. The workflow is initiated by specifying model struc-
tures and available experimental data. In the absence of initial obser-
vations, GSA (Fig. 3, Step 1) can be performed to explore the design

] I h.iden_valida
b.iden_parmest f.des_md
R f_)’ Model Validation
Parameter Estimation Model Discrimination
a.sc_sensa . Y ‘ i.iden_utils
I I c.iden_uncert e.sc_estima | | g.des_pp -
Sensitivity Analysis N 3 . 3 post-analysis
1 —> | Uncertainty Analysis __Estimability Analysis | ‘TI Parameter Precision 3.
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Fig. 3. Model identification workflow implemented by MIDDoE. The key identification steps are indicated by numbers, while the executive software modules are
marked with alphabetic labels. Solid arrows represent the model flow, and dashed arrows represent the data flow.
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space, inform the configuration of preliminary experiments, or rank the
parameter significance.

Once measurements are available, preliminary model calibration
and uncertainty quantification are performed (Fig. 3, Step 2). If multiple
candidate models remain indistinguishable, MBDoE-MD is applied
(Fig. 3, Step 4) to design experiments that maximise the divergence in
their predictions. This process may be iterated alongside recalibration
until a single model is preferred. If parameter uncertainty remains high,
two complementary strategies are available:

(i) EA (Fig. 3, Step 3), which reduces model complexity by fixing
poorly identifiable parameters.

(ii) MBDoE-PP (Fig. 3, Step 4), which designs experiments to improve
parameter precision.

These strategies may be applied separately or in tandem. Once a
single, well-defined model is identified, it is validated (Step 5) through
cross-validation and post-analysed for reporting.

3.3. Client layer

Data, models, and settings are the three main inputs, which each
MIDDoE module depends on. To guarantee compatibility with experi-
mental protocols, data are either imported as Excel files or supplied as
Pandas DataFrames. Models are implemented as Python functions or as
interfaces to external simulators, with configuration options supplied
via user-provided dictionaries.

Two fundamental dictionaries — system and models, which serve
as configuration hubs across all modules in MIDDoE, regulate how
models and data are interpreted. The system dictionary establishes the
model internal structure, specifying the state variables, determining
which are measured, and setting measurement constraints as needed. It
also distinguishes between time-invariant and time-variant controllable
inputs and classifies the output variables, each constrained within user-
defined feasible domains. The models dictionary determines how the
model is loaded, identifies the parameters involved along with their
corresponding bounds, and specifies the model interface — whether in-
ternal, externally defined, or connected to third-party simulators — used
to evaluate the model.

3.4. Kernel layer

MIDDOoE is designed for the analysis of lumped dynamic systems
(DAE systems), with time typically treated as the independent variable.
However, for steady-state applications or models governed by alterna-
tive independent variables, this convention can be adapted accordingly.
Furthermore, MIDDoE supports certain classes of models involving
Partial Differential Algebraic Equations (PDAEs), provided that the
additional independent variable can be coarsely discretised and each
segment response treated as discretised individual outputs (e.g., this
occurs in some solution methods of population balance models). This
flexibility enables the package to accommodate a broad spectrum of
process systems and mechanistic model structures.

MIDDoE supports simulation of MIMO systems, denoted as M(@), by
referencing models through the models dictionary using one of four
available methods:

. As a built-in DAE model selected from the krnl_models module;

. As an externally defined DAE available in the global namespace;

3. As a user-defined black-box model in Python (or wrapped around
external simulators);

4. As a gPROMS-based model accessed through an integrated simula-

tion interface.

N =

Regardless of the simulation backend, all models must conform to a
standardised interface. The model function must accept the following
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five inputs:

e t: A list of time points at which the model is evaluated;

e y0: The initial conditions for the differential state variables x(t);

e tii: A dictionary of time-invariant input controls representing w;

e tvi:Adictionary of time-variant input controls u(t), defined as time
series;

e theta: A list of model parameters  to be estimated.

The output must be a dictionary in which each key corresponds to a
model response, and each value is a list representing the variable tra-
jectory over the specified time vector.

This modular separation of simulation as an internal kernel enables
MIDDoE to function as an extensible, modular framework. The same
simulation engine can be called uniformly across sampling, parameter
estimation, and input optimisation tasks, facilitating flexible experi-
mentation across a wide range of dynamic systems.

3.5. Executive modules

The executive modules of the MIDDoE logic layer (Fig. 3) are further
explained here to include implementation details of the aforementioned
methods (see Section 2).

Module (a): sc_sensa — GSA

This module implements Sobol’s based-GSA (see Section 2.2) with
support for parameter or control input sampling. It allows analysis over
either the full feasible space or a damped region around nominal values.
Parallel sampling and evaluation are supported to distribute samples
across assigned logical CPUs, thereby reducing runtimes. Outputs
include structured dictionaries of $; and St, indexed by model, time, and
response.

Key features, and their corresponding configuration keywords are
summarised in Table S2 together with additional implementation and
execution details that are provided in the Supplementary Material S5.1.

Modules (b): iden_parmest — parameter estimation

Parameter estimation is defined as an optimisation problem
employing various cost functions, including LS, WLS, MLE, and CS (see
Section 2.3). Model responses are normalised by their maximum
observed values across batches, and sample sizes are scaled by response
type to promote consistency across outputs with differing dynamic
ranges. The parameter space is normalised to [0,1]™ to improve nu-
merical stability and mitigate bias caused by differences in parameter
magnitudes.

A variety of local optimisers, including Sequential Least Squares
Programming (SLSQP), Nelder-Mead simplex (NMS), Broyden—
Fletcher-Goldfarb-Shanno (BFGS), Limited-memory BFGS (LMBFGS),
and trust-region constrained (TC) methods as well as Differential Evo-
lution (DE) for global search, are available solvers (Jorge Nocedal, 2006;
Virtanen et al., 2020). To overcome the restricted exploratory of local
optimisers, they can be executed in multi-start routines and parallel
computing can be employed to prevent excessive runtimes. Parallelisa-
tion assigns each optimisation task a randomly selected initial guess on a
specific logical CPU, with the final solution chosen as the best among all
converged tasks. These solvers operate within user-defined parameter
bounds and can be initialised either randomly or from a nominal
parameter vector, acting on the specified cost function.

Modules (c): iden_uncert — uncertainty analysis

This module constructs the sensitivity matrix with all terms
expressed in the scaled parameter space to ensure numerical consis-
tency. To balance non-linear errors from large perturbation steps with
truncation errors from excessively small steps (especially in the presence
of weakly varying responses), MIDDoE implements an adaptive step-size
strategy. This strategy performs a mesh-independency test on the
perturbation magnitude and selects a value near the plateau region,
where the eigenvalues of the variance-covariance matrix V, remain
approximately constant.
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To improve derivative accuracy, both forward (first-order) and
central (second-order) schemes of Finite Difference Method (FDM) are
available. Additionally, when the chosen optimiser supplies the Hessian
(i.e., second derivatives of the objective), an asymptotic method lever-
ages this information to estimate uncertainty directly. For enhanced
robustness, a frequentist bootstrap approach is also implemented (see
Section 2.4) and complemented with moment estimates based on trun-
cated normal fits to the bootstrap parameter distributions (Casella and
Berger, 2024).

An overview of estimation and uncertainty options, including solver
types, objective functions, and output controls, is summarised in
Table S3 together with executive details in the Supplementary Material
S$5.2.

Module (d): iden_expera - In silico Experimentation

This module generates synthetic experimental data for bench-
marking numerical strategies. It can be used by supplying a settings
dictionary that defines the true model, true parameters, type of error
(absolute or relative), and batch setup controls. These values are treated
as ground truth for the selected model. Simulations are conducted
accordingly, after which synthetic noise is independently added to each
measured response. The noise is sampled from a normal distribution
with the absolute or signal relative standard deviations.

The generated data is automatically saved in .x1sx format for
downstream analysis.

Module (e): sc_estima — EA

This module supports EA with orthogonalisation method (detailed in
Section 2.5) to increase the effective degrees of freedom in mode iden-
tification by identifying and fixing practically insignificant parameters.
The module outputs the parameter ranking (relative to their original
positions), the optimal subset size, the complete r.. profile (see the
Supplementary Material S3), and the associated WLS cost function
output values for diagnostic comparison.

Modules (f, g): des_md, anddes_pp — MBDoE-MD and MBDoE-PP

Physically adaptive MBDoE modules plays central role in MIDDoE by
providing a systematic framework to design informative experiments for
model discrimination (MBDoE-MD) and parameter precision (MBDoE-
PP) (see Section 2.6). These modules act as high-level interfaces to a
uniform architecture that separates the workflow into variable indexing
and scaling, objective evaluation, optimisation kernel, and result
reporting. This modularity ensures numerical consistency and compu-
tational efficiency.

The MBDoE optimisation kernel of MIDDoE currently supports DE as
a particle-based global optimiser, a Direct Search method (DS) (Hooke
and Jeeves, 1961) as a gradient-free local optimiser, and a joint
global-local strategy (DEPS) that refines global solutions through local
search. These methods are embedded with hard constraints directly
enforced within the optimisation, to address the strong non-convexities
inherent in dynamic models and constraint formulations in sequential
MBDoE problems. Computational efficiency and robustness against local
minima are enhanced via multi-start strategies distributed across logical
CPU cores with parallelisation. These approaches help by assigning each
optimisation task a randomly selected initial guess to a specific logical
CPU, and by selecting the best solution among all converged tasks.

These modules are designed to operate in iterative workflows, where
model predictions, parameter estimates, and associated uncertainties
are updated round by round.

MIDDOoE accepts the specification of the decision vector ¢ through
either scalar controls or CVPs, supporting piecewise-constant (CPF) and
piecewise-linear (LPF) profiles, each subject to design space bounds and
perturbation limits. The framework also supports physical and experi-
mental constraints, such as the number and spacing of samples, inclu-
sion and exclusion zones, forced sampling times, synchronisation of
sampling across outputs, and switching constraints in control profiles.

An overview of configuration options for MBDoE-MD and MBDoE-PP
and their executive details are summarised in Table S4 of the Supple-
mentary Material S5.3.
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Module (h): iden_valida — Cross-Validation

This module performs the LOOCV method (detailed in Section 2.7)
treating each batch as a fold.

Module (i): iden_utils — Post-Analysis and Reporting

Designed to support result interpretation, this module generates vi-
sual and tabular outputs, including design decision plots, estimability
profiles, model fits, sensitivity indices, validation metrics, inter-
parametric confidence regions, and the propagation of t-values and P-
values after each experimental round for all the candidate models. All
outputs are stored in .x1sx format for external analysis and in .jac
format for maximal information retention and portability.

3.6. Package dependencies

The MIDDOoE library depends on several external packages beyond
the standard Python library to support its core functionalities. These
dependencies provide essential statistical, mathematical, and compu-
tational tools necessary for MIDDoE operation. All required packages are
installed automatically with MIDDoE, ensuring a smooth and consistent
setup process for users. Table 2 summarises these dependencies,
including their specific versions and the roles they fulfil within the
library.

3.7. Package limitations

MIDDoE has been developed with a focus on model identification and
system analysis, which means that its simulation capabilities are
intrinsically limited by those of SciPy when compared to mature
modelling tools such as PYOMO and gPROMS. However, this limitation
can be partially addressed by integrating MIDDoE with external simu-
lators, even if at the cost of increased computational burden. Seamless
integration with more advanced solvers as an internal model-solving
capability could improve this computational bottleneck in future ver-
sions. Such improvements would also enable the solution of PDAE
models. Furthermore, MIDDoE currently lacks techniques to identify the
feasible design space (Geremia et al., 2023), which would enable the
detection of meaningful subsets of operating conditions — an important
direction for future developments.

4. Using MIDDoE: Case studies

MIDDoE has been successfully employed in previous experimental
studies investigating the kinetics of mineral carbonation (Tabrizi et al.,
2025). The following examples, executed with MIDDoE version 1.0.0,
will be considered to provide more insight into the package applications:

e Discrimination among candidate models: when only a limited number
of experiments can be conducted, and the selection of the most
representative model is hindered by minor divergence of models in
predicting the phenomena, MBDoE-MD offers a powerful strategy.

Table 2
List of MIDDoE package dependencies including version numbers and func-
tionality descriptions.

Package Version  Functionality Reference

Numpy 2.0.2 Numerical computations, efficient array (Harris et al.,
handling, and vectorised mathematical 2020)
operations.

Scipy 1.13.1 ODE solving, integration, interpolation, (Virtanen
statistics, and basic constrained et al., 2020)
optimisation features.

Pandas 2.2.3 Managing, manipulating, and analysing ~ (McKinney,
tabular data, CSV and Excel file I/0. 2010)

Matplotlib 3.94 Visualisation of plots, charts, and (Hunter, 2007)
graphs.

Pymoo 0.6.1.3 Solving complex constrained (Blank and
optimisation problems. Deb, 2020)
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By optimising the informativeness of each experiment, this technique
enhances the ability to distinguish between candidate models. Once
a model is selected, parameters are estimated and their precision is
evaluated. The identified model is subsequently validated to confirm
its predictive ability. The first case study addresses a challenging
model discrimination scenario, in which four competing models are
expected to explain the observed phenomena.

e Parameter estimation: experimental data are available and no additional
data can be obtained: in cases where the obtained data are insufficient
to precisely calibrate the model parameters and no further experi-
ments can be conducted, EA is employed to fix the unidentifiable
parameters and minimise uncertainty, while maintaining acceptable
predictive accuracy based on the available data. The second case
study initially discusses this challenge, i.e. the identification of a
model once the experimental campaign has concluded.

e Parameter estimation: designing new experiments under minimal experi-
mental budget: when no prior information is available and the goal is
to minimise the size of the experimental campaign, local identifi-
ability issues may arise due to an ill-conditioned I. In such cases, EA
is first employed to stabilise the MBDoE-PP process against numer-
ical instabilities. Subsequently, MBDoOE-PP is used to sequentially
improve the quality of the experiment design, maximising the
number of precisely estimable parameters until the experimental or
computational budget is exhausted, or no improvement is observed.
The second case study tackles also this second challenge, i.e.
designing experiments under a limited budget for a model that suf-
fers from estimability issues.

4.1. Case study 1: Discrimination among candidate models

This case study focuses on model discrimination within a fed-batch
fermentation process for intracellular enzyme production by baker’s
yeast. The system — described using an unstructured and unsegregated
modelling framework — operates isothermally with a single growth-
limiting substrate. The feed stream contains no product. The individ-
ual steps of this workflow are described in detail below. The MIDDoE
modules applied to construct a discriminative model identification
workflow are shown in Fig. 4 and detailed as follows.

4.1.1. Step 1: Definition of the system and candidate models

Dynamic behaviour is characterised by biomass concentration (y,,
gL} and substrate concentration (¥, gL'}, manipulated through the
dilution rate (u;, h'l), feed substrate concentration (uo, g~L'1), and the
initial biomass concentration (w; = y;(0), g-L'l). Model M; (Eq. 18.a), a
Monod-type formulation with maintenance, is assumed to represent the
true system with true parameters as 6; = [0.25, 0.25, 0.88, 0.09], and a
feasible parameter space of +50% for model calibration.

Three alternative kinetic models — Mj; (Eq. 18b, Canoid kinetics), My
(Eq. 18c, linear growth), and My (Eq. 18d, Monod without mainte-
nance) — are considered as candidate structures for discrimination. The
goal is to evaluate whether experiment designs could effectively
distinguish these candidates from the assumed true model, and if the
MIDDOoE is capable to perform the MBDoE-MD methods with following
the physically constrained and bounded design space, represented in
Table 3. The model formulations and parameter sets are adapted from
(Chen and Asprey, 2003).
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To generate the in silico data, the assumed true model M; is simu-
lated using known true parameter values by krnl_expera. Two batch
experiments are designed and simulated over a 40-hour process time
under the following operational conditions, aligned with the defined
design space:

e Experiment 1: u; (t) = 0.05 h', uy(f) = 30.00 gL, w; =1.00 gL
o Experiment 2: u; (t) = 0.10 h'}, uy(¢t) = 30.00 gL, w; =1.00 gL't

For each output trajectory, 10 sampling points are uniformly
distributed over the process duration. At each sampling time, mea-
surement noise is introduced by adding normally distributed absolute
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Fig. 4. Model identification workflow implemented by MIDDoE for model discrimination in Case Study 1. The workflow includes the following steps: (1) definition of
the system and candidate models followed by generation of in silico data; (2) calibration of candidate models; and (3) design of experiments using MBDoE-MD.
Generation of data and steps (2)-(3) are repeated until the models are successfully discriminated and calibrated.

Table 3

Design space and constraints.
Controls u us wy
Min 0.05 5 1
Max 0.2 35 5.5
CVP CPF LPF
Steps 4 4
Relative constraint relaxed relaxed
Minimum perturbed signal 0.01 1
Minimum switching time interval 0.5 0.5
Measurements Y1 Y2
Number of Sampling points 10 10
Minimum sampling time interval 0.5 0.5
Sampling point strategy Synchronised

errors, with standard deviations of 15% for y; and 10% for y,. This
simulated noise reflects the experimental variability typically encoun-
tered due to the different characterisation techniques employed.

4.1.2. Step 2: Calibration of candidate models
A WLS cost function and DE global optimisation algorithm are
applied using iden_parmest to perform preliminary parameter

estimation. DE is selected to reduce the likelihood of being trapped in
local optima during parameter estimation and to avoid biases intro-
duced by varying initial guesses.

Following calibration, parameter precision (t-value), and the prob-
ability of each model being the true one (P-value) are evaluated using
iden_uncert. These values are reported in Table 4, which highlights
the relative likelihood of model M; being the correct representative,
based on the highest P-value. Nonetheless, model My also exhibits
considerable predictive capability, indicating that additional data are
needed to effectively discriminate between the top two candidates. All
remaining models are excluded from the model discrimination
campaign due to negligible P-values.

The performance of the two remaining candidate models is illus-
trated against the observation points from the preliminary experiments
in Fig. 5.

4.1.3. Step 3: Design of experiments using MBDoE-MD, followed by
recalibration and model discrimination

To further discriminate between M;, and My, a new experiment is
designed using des_md, employing both the HR and BFF design criteria
through joint optimisation strategy that combines DE and Direct Search
for local refinement. This approach reduces the likelihood of the opti-
miser getting trapped in suboptimal local minima while refining the
solution locally. The MBDoE-MD optimisation incorporates the design

Table 4

Preliminary calibration results.
Param-eter M;(0,U,Y) Mjy(0,U,Y) Mp(6,U,Y) M (0,U,Y)

Estimate t-value Estimate t-value Estimate t-value Estimate t-value

01 0.25 14.91 0.26 7.49 0.06 2.81 0.15 41.03
O 0.26 10.10 0.02 5.11 0.58 2.95 0.37 6.91
73 0.88 11.31 0.94 5.92 0.02 0.69 0.45 25.67
A 0.09 5.90 0.10 3.25 - - -
ef-95% 2.02 2.02 2.02 2.02
P-value 90.47% 9.53% 0.00% 0.02%

10
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Fig. 5. Overlay plot of data and predictions of candidate models (M;, My;) after
preliminary calibration for measurements of (a) y;, (b) y, in experiments 1
and 2.

space and experimental constraints outlined in Table 3, ensuring feasi-
bility and addressing practical limitations through the optimisation
kernel of MIDDoE. The resulting experiment designs, along with the
expected response divergences based on manipulated CVPs, are illus-
trated in Figs. 6 and 7 for the HR and BFF criteria, respectively.

All HR designs conform to the predefined design space and con-
straints; no optimisation constraints are violated. In contrast, some of
the CVP switching times in the BFF designs violate the Minimum CVP
switching signal constraint (see the Supplementary Materials S6). This
violation occurs when the same computational budget is defined for the
optimiser of both designs. However, it could have been avoided by
allocating a higher number of maximum iterations to the optimisation of
the BFF design.

Building upon the experiment designs outlined above, these ap-
proaches are compared in terms of their impact on decision-making and
ultimate discriminative capability in systems characterised by absolute
errors. Under such conditions, the BFF design approach can be
misleading, as it tends to focus on regions with lower signal levels where
noise dominates the measurements, thereby reducing their effectiveness
on calibration of the resulting experimental data (further detailed in the
Supplementary Material S6). The final discrimination decision is made
following simulated experimental data generation and model recali-
bration, using the same procedures described in Sections 4.1.1 and
4.1.2. Specifically, new synthetic data are generated based on the

11
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optimised experiment design, appended to the original dataset, and used
to recalibrate all models. Initial parameter values are updated using the
preliminary estimations from Section 4.1.2. The final divergences be-
tween models are illustrated in Figs. 6 and 7, and the resulting P-values
for HR and BFF designs are 99.9% and 99.2%, respectively.

In both scenarios, M; achieves a high P-value of more than 99%,
clearly confirming its status as the most representative model of the
underlying process. This round also yields updated parameter estimates,
95% ClIs, and corresponding t-values, summarised in Table 5. This table
also reveals notable shifts in parameter estimates for model My. All
parameter estimates of model M; exhibit t-values greater than the
reference threshold of 2.00, confirming their precision. Furthermore, the
estimated values and their 95% CIs include the true parameters used for
simulation, indicating high accuracy in both model calibration and
discrimination.

4.2. Case study 2: Model calibration

This case study applies the MIDDoE framework to calibrate a
mechanistic model describing a batch pharmaceutical synthesis process
(Moshiritabrizi et al., 2024). The model captures the dynamic behaviour
of reactions involved in the production of a quaternary chloride salt
intermediate (QS1Cl), relevant to HIV drug manufacturing. The syn-
thesis involves a reversible main reaction between the starting material
(SM) and trimethylamine (TMA), and a parallel side reaction that irre-
versibly converts QS1Cl into an impurity (CIDMI) and a volatile
by-product (MeCl):

ke
ks

SM + TMA < QS1ClL, QS1Cl=S CIDMI + MeCl
—
ke

19)

In scenario 1, a concluded experimental campaign is assumed, where
EA assists selection of estimable parameters, and thereby achieving an
identified form of model with maximum possible precision of parame-
ters and preserved predictive capability.

In scenario 2, a limited experimental budget is assumed without
providing prior information, where GSA is used to tailor the model for
first MBDoE run, by detecting and fixing unimportant parameters
without prior information. After obtaining a first set of in silico data, EA
is used to reassess the state of parameters for their capability of being
identified, and fixing non-estimable parameters. At the end of each loop,
parameters are estimated, and uncertainty evaluated. These workflows
are illustrated in Fig. 8 and explained stepwise.

4.2.1. Step 1: Definition of the system and candidate model

This dynamic behaviour is characterised by the concentrations of the
starting material (Csm(t) as y;), the main product (Cosi¢i(t) as y,), and
the impurity (Cepmr (t) as y3), allin mol-L. These outputs are influenced
by the initial concentrations of SM (Csm(0) as wy), and TMA (Crua (0) as
w»), as time-invariant controls, and a time-varying temperature profile
(T(t) as uy), serving as the manipulated variables in the model identi-
fication task. Model M (Eq. 20) represents the mass and energy balance
of the QS1Cl production process with a true parameter vector § =
[50000, 75000, 0.4116, 111900, 9905, 30000]. Fixed constants in the
system are R=8.314 J-molK' as universal gas constant, and
Tref=296.15 K as reference temperature. The reactions are studied for 16
h of process time. The design space and its associated constraints are
summarised in Table 6, while the feasible parameter space and the
initial guess are presented in Table 7.
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Fig. 6. Designed experiments for MBDoE-MD using the HR criterion, showing expected divergence for (a) y;, (b) y,, and divergence after recalibration for (c) y;, (d)
¥,, along with (e) the designed CVPs.
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Fig. 7. Designed experiments for MBDoE-MD using the BFF criterion, showing expected divergence for (a) y;, (b) y,, and divergence after recalibration for (c) y;, (d)
y,, along with (e) the designed CVPs.

Table 5
Parameters and their precision after recalibration.
Parameter HR design BFF design
M;(6,U,Y) Mp(6,U.Y) M;(6,U,Y) Mp(6,U.,Y)
Estimate CI 95% t-value Estimate CI 95% t-value Estimate CI 95% t-value Estimate CI 95% t-value
6, 0.25 23.08 0.22 7.86 0.25 15.82 0.26 14.92
+0.01 +0.03 +0.02 +0.07
O 0.25 13.14 0.01 1.72 0.25 10.46 0.02 3.14
+0.02 +0.01 +0.03 +0.02
73 0.88 17.88 0.78 6.50 0.88 12.04 0.95 3.86
+0.06 +0.01 +0.10 +0.33
64 0.09 8.56 0.098 2.80 0.09 6.22 0.10 2.16
+0.01 +0.03 +0.02 +0.06
4.2.2. Scenario 1: Available experimental data and no possibility for o Experiment 1: uy(t) = 296.15 K, w; = 0.366 molL}, w, =
further experiments 0.19 mol.L!
Four batches of experimental data, each containing 17 uniformly o Experiment 2: u;(t) = 306.15 K, w; = 0.366 mol-L, wy, =
distributed sampling points, are generated in silico using the 0.19 mol.L!
krnl_expera module with 0.5% absolute normal noise (as described e Experiment 3: u;(t)= 296.15 K, w; = 0.65 molL?, wy =
in Section 4.1.1). The experiments are configured as follows: 0.595 mol-L'!
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Fig. 8. Model identification workflow implemented by MIDDoE for Case Study 2. Arrows and step numbers in red indicate Scenario 1, blue indicate Scenario 2, and
black represent shared steps. Following step (1), which defines the system and candidate models, in Scenario 1, the workflow generates in silico data and proceeds
with (2) estimable parameter subset selection, and (3) model calibration. Generation of data and Steps (2)-(3) are repeated until the full observation matrix is
evaluated, followed by model validation in step (4). In Scenario 2, the process begins with (2) GSA for preliminary estimable parameter selection, followed by (3)
MBDOE-PP design and in silico data generation, (4) subset selection, and (5) model calibration. Steps (3)-(5) are repeated until the experimental budget ends,

concluding with model validation in step (6).

Table 6 Table 7
Design space and constraints. Feasible parameter space.
Controls u w1 Wo Parameter 6° Lower bound Upper bound
Min 296.15 0.05 0.1 01 100000 10000 1000000
Max 306.15 1.0 1.0 6> 100000 0 200000
CvP LPF 03 1 0.1 10
Steps 6 04 100000 50000 200000
Relative constraint increasing 05 100 10 10000
Minimum perturbed signal 0.01 O 10000 10000 200000
Minimum switching time interval 0.3
Measurements Y1, ¥2,¥3
Number of Sampling points 17
lemmum samp lmg time interval 03 round, EA is performed, followed by parameter subset selection and
ixed sampling points 0,16 i X . .
Sampling point strategy synchronised model calibration using the selected estimable parameters. The EA
procedure is called by the sc_estima module and employs the LMBFGS
. 1 optimiser with a multi-start strategy. The sensitivity matrix is con-
o Experiment 4: u(t)= 306.15 K, wi = 0.65 molL™, w, = structed using the central finite difference method.

0.595 mol-L!

These configurations constitute the full list of input settings used for
the four experiments.

4.2.2.1. Step 2: Estimable parameter subset selection. Batch data are
sequentially generated and appended to the observation matrix. At each

14

Throughout the four EA calls, parameter 65 consistently ranks as the
most estimable, while the rankings of the remaining parameters varies
across batches. When all experimental data are combined, the final
ranking of parameters in descending order of estimability is: 03, 04, 0s,

06, 01,0. The parameter subset selection of EA indicates that only the
first 3 parameters in the list are estimable.
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Table 8
Model calibration results for Scenario 1.
Round 1 Round 2 Round 3 Round 4
Parameter Estimate t-value Estimate t-value Estimate t-value Estimate t-value
o - - - - - -
0> - - - - - -
O3 0.4115 52.34 0.4120 55.97 0.4141 174.70 0.4155 205.25
04 - - 116038 14.69 116670 10.76 112017 66.30
Os 4210 1.73 3853 1.82 6141 2.99 7051 4.08
0 - - - - - - -
{ef-95% 2.01 1.98 1.97 1.97
1.0 —_— 1.0
0.8 0.8+
g k= g
g £ 0.6 g 0.61
= = =
2 2 2
5 5 0.4 5 0.4
:;s. ~Nli~< e
0.2 0.2+
0.0 L = ‘ - 0.0 - - -
0 5 10 15 0 5 10 15
t [h] t [h] t [h]
(a) (b) (©)
1.0 1.0r__\__ 1.0
0.8 0.8 0.8
Q] [\l N
g g =
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1 [h] 1 [h] t[h]
(d) (e)

Fig. 9. Variation of the total Sobol index S}% of parameters 6; over process time for the measured responses: (a) y;, (b) y,, and (c) y; in experiment 1, and (d) y;, (e)

Yo, and (f) y; in experiment 2.

4.2.2.2. Step 3: Model calibration. After each EA run, selected parame-
ters are estimated using the iden_parmest module with identical
optimiser settings. The uncertainty of these estimations is assessed via
the iden_uncert module, employing a bootstrap method'. Table 8
lists the estimated parameters alongside their t-values. Based on the
comparison with the reference t-value at 95% confidence level, all the
EA suggested parameters are statistically assessed to be precise after
being estimated with the full dataset. Estimated values show progressive
precision and accuracy with the sequential addition of information to
the workflow. The final model is identified with a high predictive
capability (R? of 0.99).

4.2.2.3. Step 4: Model validation. Cross-validation of the final state of
identified model is performed using the iden_valida module. It yields
a high validation R? of 0.9985 + 0.0015, which together with the high

! This method is selected due to the presence of sloppy parameters and ill-
conditioning of the Fisher information matrix.
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precision of parameter estimates and strong predictive performance,
confirms the model predictive ability.

4.2.3. Scenario 2: Sequential design of new experiments

4.2.3.1. Step 2: Preliminary ranking of parameters. A preliminary eval-
uation of the contribution of each parameter to the measured responses
is performed using the sc_sensa module. This analysis is performed to
assess the influence of parameters before designing any experiments in
order to tune the model and to avoid the numerical instabilities of
MBDoE. Sampling is conducted across the entire feasible parameter
space, while fixing the input profiles to those of experiments 1 and 2 in
Scenario 1. Fig. 9 illustrates the variation of the total Sobol index over
time for each measured state variable under the respective input
conditions.

The results indicate a descending order of average parameter influ-
ence, with 03, s, 04, and 6, contributing most significantly. Based on
this ranking, 6; and 6, are considered non-influential under the tested
operational conditions and fixed to their initial guess before running the
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Table 9
Model calibration results for Scenario 2.
Round 1 Round 2 Round 3 Round 4

Parameter Estimate t-value Estimate t-value Estimate t-value Estimate t-value
o - - - - - - - -
0> - - - - - - - -
O3 0.4170 125.12 0.4160 34.65 0.4162 53.50 0.4163 52.95
04 - - 110692 11.80 109686 17.08 109686 14.32
Os 4004 2.49 4225 3.19 4337 2.56 4908 3.05
06 - - - - - - 107093 2.42
{ef95% 2.01 1.98 1.97 1.97

first MBDOE-PP.

4.2.3.2. Steps 3 and 4: Design of experiments and in silico data gen-
eration. The first model-based experiment focused on parameter preci-
sion is designed using the des_pp module. D-optimality is employed to
maximise the initial information content, aiming to reduce the uncer-
tainty of the four remaining parameters. The global-local joint optimiser
(DEPS) in MIDDOE is used for this step. The same algorithmic settings are
applied in the subsequent rounds, but with an E-optimality criterion to
target the identification of the less influential parameters. The opti-
mality criterion of MBDOE-PP is switched from D-optimality to E-opti-
mality to shift the focus from enhancing the precision of the most
influential parameter to improving that of the least precisely estimated
one. This switch reallocates the optimisation budget toward designing
experiments that minimise the largest eigenvalue of the var-
iance-covariance matrix, thereby improving the precision of parameters
with lower t-values. A similar scenario, where D-optimality is main-
tained throughout the workflow for comparison purposes, is presented
in Supplementary Material S7. All designed experiments compile with
the physical constraints of the process. These experiments are conducted
entirely in silico, under the same error regime described in Scenario 1
(Section 4.2.2).

4.2.3.3. Step 5: Estimable parameter subset selection. This step is carried
out immediately after each round of experiment design using the same
specifications as in Scenario 1 (Section 4.2.2.2). Consistently, 63 is
identified as the most estimable parameter throughout the sequence.
However, by the end of the campaign, four parameters are suggested as
estimable by EA. The final ranking of parameters is 63, 0s, 04, 0, 01,02
and the richer information acquired through MBDoE-PP has enabled the
detection of 0 as an estimable parameter in this scenario.

The estimable subset of parameters is assessed using the same set-
tings described in Scenario 1 (Section 4.2.2.2). Table 9 presents the
sequential parameter calibration following each newly designed exper-
iment, and the selection of estimable parameters. Comparing the results
of this scenario with those obtained from non-MBDoE-designed experi-
ments highlights a more substantial improvement in precision after the
first design, attributable to D-optimality. Additionally, the number of
statistically significant parameters increases from three to four.
Switching to E-optimality in the second round improves the precision of
the least estimable parameters, while slightly reducing it for the most
precise ones. The final model exhibits a high predictive capability, with
aR2 of 0.99.

4.2.3.4. Step 6: Model validation. Leveraging the same approach as in
Scenario 1 (Section 4.2.2.3), the model is validated and yields a high
validation R? of 0.9996, confirming the identified model predictive
ability.

5. Conclusions

This work presented MIDDoE, a modular and end-to-end Python
package for comprehensive employment of MBDoE within model
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identification workflows. It is based on three conceptual layers — client,
logic, and kernel - letting it operate independently of specific model
structure syntaxes. Its architecture treats the model and simulator as
part of a core kernel, with standardised data interfaces to ensure
seamless integration. This design supports both built-in and externally
defined simulation routines, offering flexibility and interoperability
across different modelling environments.

As a simulation-driven framework for systems governed by ODE:s,
MIDDoE’s logic layer implements techniques for designing experiments
and conducting (1) model discrimination and (2) model calibration.
These techniques are further supported by GSA and EA to assess the
parameter space to fix practically insignificant parameters. This im-
proves the robustness of MBDOE in ill-conditioned systems, and guides
selection of estimable parameters. Besides, it facilitates practical appli-
cations by supporting the enforcement of physical constraints and user-
defined optimisation configurations. The MBDoE engine is built to
handle non-convex design spaces and practical experimental limitations.
It is further supported by integrated numerical techniques for input
space exploration, parameter estimable subset selection and estimation,
uncertainty quantification, and model validation.

Finally, MIDDoE is built with usability as a core principle. For ex-
perimentalists and users without programming experience, the client
layer provides a clear and intuitive interface. Meanwhile, advanced
users can customise workflows using modular tools within the logic
layer. This dual approach, combined with the use of simple Python/
Numpy arrays, ensures that MIDDoE can serve users seeking a plug-and-
play tool without requiring familiarisation with a specific software
ecosystem.

Although MIDDoE currently supports the most common sequential
MBDOoE techniques, several challenges remain that warrant further in-
vestigations both in terms of experimental strategies and model
compatibility. These include detecting feasible design spaces and con-
straining MBDoE within them, enabling online or inline redesigning of
experiments, and extending support to more complex PDAE structures.

List of acronyms and symbols (all acronyms and symbols refer to
general sections only and not to the case studies)

Acronyms
BFF Buzzi-Ferraris and Forzatti (a MBDoE-MD method)
BFGS Broyden-Fletcher-Goldfarb-Shanno (an optimisation method)
CI Confidence Interval
CPF Constant Piecewise Profile (a CVP method)
CS Chi-square (a fitting cost function)
CVP Control Vector Parameterisation
DAE Differential Algebraic Equation
DE Differential Evolution (an optimisation method)
DEPS Differential Evolution and Pattern Search (an optimisation method)
DoF Degree of Freedom
DoE Design of Experiments
EA Estimability Analysis
GP Gaussian Process
GSA Global Sensitivity Analysis
HR Hunter and Reiner (a MBDoE-MD method)
LMBFGS Limited-memory BFGS (an optimisation method)

(continued on next page)
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(continued) (continued)
LMS Left Matrix Scrambling z, Measurement errors variance-covariance matrix [N; x N,]
LOOCV leave-one-out cross-validation ] Design vector of MBDOE [N, ]
LPF Linear Piecewise Profile (a CVP method) @opr  Optimal design vector [N, ]
LS Least Squares (a fitting cost function) L] The feasible design space
MBDoE Model-Based Design of Experiments
MBDoE-MD Model-Based Design of Experiments for Model Discrimination
MBDOE-PP Model-Based Design of Experiments for Parameter Precision Funding
MIMO multiple-input, multiple-output (a model structure)
xl\];[Es xafgmum lee.thOd Esnmat.lor.l (a. fitting cost function) This work is part of the CO2Valorize project that has received
elder-Mead simplex (an optimisation method)
PDAE Partial Differential Algebraic Equation funding from the European Union’s Horizon Europe research and

PS Pattern Search (an optimisation method)

SINDy Sparse Identification of Nonlinear Dynamics

SLSQP Sequential Least Squares Programming (an optimisation method)
TC Trust-region constrained (an optimisation method)

WLS Weighted Least Squares (a fitting cost function)

Latin symbols

Cl; Confidence Interval of estimated parameter 6;

Uncertainty weight factor of T-optimal design criteria at each sampling time t

for models [, and I

f Differential equation in the MIMO system

g Algebraic equation in the MIMO system

1 Fisher information matrix [Ny x Ny]

M Model as a MIMO system

P; Probability of the i-th model being the best among N;, candidates

Q, Local sensitivity matrix for each measured response r at all sampling times ty,,
[Ny, x Nol

Qi Local sensitivity matrix of model [ at each sampling time t for measured
responses [N, x Ny]

R? Coefficient of determination

S1 Matrix of Sobol’ first-order for model state variables [N, x N;]

St Matrix of Sobol’ total-order for model state variables [N, x N;]

t Time vector encompassing all control and measurement time points [N; x 1]

t t-value of estimated parameter 8;

e Reference threshold, corresponding to a Student t-value

Ty T-optimal design criteria for MBDoE-MD between models  and I

U Matrix of time-dependent control inputs [Ny, x N¢]

u Vector of time-dependent control inputs at each time step [N, x 1]

A\ Variance-covariance matrix of model parameters [Ny x Ny]

Voii The i-th diagonal element of V,

Wi, Modeling errors contribution in MBDoE-MD of model [ at each sampling time t

w Time-invariant control inputs [N, ]

X Matrix of time-variant state variables, governed by differential equation [Ny
X Ni]

X Vector of time-variant state variables at each time step, governed by
differential equation [Ny x 1]

X Vector of time-variant derivatives of state variables at each time step,
governed by differential equation [Ny x 1]

Y Matrix of measured state variables [N, x N;]

y Vector of measured state variables at each time step [N, x 1]

y Vector of model predictions at each time step [N; x 1]

Yry  Model prediction of response r at time step t

Z Matrix of time-variant state variables, governed by algebraic equation [N, x
Nl

z Vector of time-variant state variables at each time step, governed by algebraic

equation [N x 1]

Greek symbols

a Significance level
2 Chi-Square value

e Vector of errors [N, x 1]

73 Scalar metrics of MBDoE-PP problems (so called alphabetical optimal
criterial)

6ty  Elements from the inverse of the measurement errors variance-covariance
matrix

0 Vector of true values of model parameters [Ny]

0 Vector of estimated values of model parameters [Ny]

0; The i-th estimated parameter

Iy
<

Prior variance-covariance matrix of model parameters [Ny x Ny]

(continued on next column)
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